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SUMMARY

The application of Density Functional Theory to three different chemical
topics is discussed in Chapter 4. First the computation of molecular
polarizabilities and the influence of the choice for the basis set and
exchange-correlation potential on the accuracy is discussed; then the
accuracy of optimized geometries of several exchange-correlation
potentials in a number of basis sets is presented, where the test set
consists either of a set of small molecules that was used previously by
others to check the accuracy of several wavefunction based methods.
Finally, the new charge analysis presented in Chapter 3 is validated by
checking its use for the concepts of molecular recognition, electron
withdrawing-donating groups and electrophilic substitution reactions.



4
.1 Polarizabilities

A comparison of Restricted Hartree Fock, Density Functional Theory and
Direct Reaction Field mean values for organic molecules

There is a growing interest in atomic and molecular polarizabilities within the scope of the

development of accurate force fields to be used in QM/MM methods133,134,138,192-194. Dispersion

and induction forces are more and more being recognized as essential parts in the

description of intermolecular interactions in chemical environments138,195-201.

It has also been noticed that using a molecular polarizability located in the center of the

molecule, often leads to improper behavior138,202.  This can be overcome by using effective

atomic polarizabilities that represent the molecular value. A set of these atomic parameters

have been constructed within the framework of the Direct Reaction Field (DRF) method,

which predict molecular polarizabilities with a deviation comparable to the estimated

experimental uncertainty203,204 (2-4 %). In this study, we present DRF results for a

representative series of organic molecules. For comparison, we have also performed

Restricted Hartree Fock (RHF) and Time Dependent Density Functional Theory (TD-DFT)

calculations on the same set of molecules, the latter also at non-zero frequency.

The computation of a polarizability  is based on a Taylor expansion of the total energy

about the electric field strength E:

U = U 0( ) − i
0( )Ei −

1

2! ij EiE j −
1

3! ijkEiE j Ek −
1

4! ijklEiE j EkE l − ... (1)

with U 0( )  the unperturbed total energy, 0( )  the permanent dipole moment,  the

polarizability and  and  the first and second hyperpolarizabilities. The appropriate

derivatives of the energy with respect to the electric field then result in expressions for the

(hyper)polarizabilities. This derivative can be obtained either analytically or numerically

by a finite field procedure. The former is faster but not standard available for all kinds of

quantumchemical methods, while the latter requires only the calculation of the energy or

the dipole moment, but is in general much slower, since the energy/dipole needs to be

calculated many times.

Methods

Restricted Hartree Fock

The RHF results are obtained with Coupled Perturbative Hartree Fock (CPHF) equations204

(as implemented in the HONDRF program133), which take the response of a molecule to an

applied field analytically into account. Dunning's triple zeta valence plus polarization

functions basis set (TZP)203 was used for all molecules, which is the largest standard

(Gaussian) basis set in the HONDRF program and has proven to give an underestimation of

the polarizabilities by ~ 22 %139.  A lot of effort has been put into constructing basis sets

especially designed for accurate calculations of the polarizability205-209. However, they are

based on Gaussian type orbitals, which makes a comparison with the ADF results (using

Slater type orbitals) impossible. Moreover, it is not the purpose of this study to compare basis
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sets or to construct them for the ADF program, but rather to make an honest comparison

between the three methods using the programs and basis sets that are readily available.

Density Functional Theory

The DFT results were all obtained by using the RESPONSE code210-212 in the Amsterdam

Density Functional (ADF) program117,177,213-215. This Time Dependent DFT (TD-DFT) method is

at zero frequency similar to a CPHF procedure, but then applied to DFT SCF equations which

gives the same polarizabilities as when using a finite field procedure. The ADF program uses

basis sets of Slater functions, of which two were used: a triple zeta valence plus polarization

(TZP, basis set IV in ADF; of equal size as Dunning's TZP basis) and a special one with triple

zeta valence plus double polarization functions and diffuse s, p, d functions (TZ2P++). This

basis set has been constructed for improving the results and has been reported to give

accurate polarizabilities210. Several potentials were used: LDA (VWN119) and GGA's (Becke88

exchange120-Perdew86 correlation121 potential, Van Leeuwen-Baerends LB94216).

Direct Reaction Field

Within the DRF approach133, a molecular polarizability is being constructed from

interacting atomic polarizabilities p :

p = p E0 + T pq q
q≠ p

N

∑
 

 
 
 

 

 
 
 (2)

with the modified dipole field tensor T pq :

T pq( )
ij

= 3rirj fT − ij r2 fE( ) r5 (3)

This can be written also as a matrix equation:

M = E + TM( ) (4)

which can be solved directly with the matrix A = −1 − T , by using the inverse of matrix A:

AM = E → M = A−1E (5)

This so-called relay matrix R = A−1  gives the linear response of the molecule to a given

external field, i.e. its polarizability in a 3Nx3N  representation. It can be reduced to a

“normal” 3x3-tensor, resulting in the molecular polarizability tensor:

mn = Rij( )
mn

i, j =1

N

∑   ;  m, n ∈ x, y,z{ } (6)

The modification is present in the screening factors fT  and f E , which represent the damping

due to overlapping charge densities. Several functions have been tested for this damping217,

of which one has survived:
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u( ) =
a3

8
e−au u = rij i j( ) 1

6

v = au

fV = 1− 1
2 v + 1( )e−v

f E = fV − 1
2 v 2 + 1

2 v( )e−v

fT = f E − 1
6 v 3e−v

(7)

In these equations the a-factor and the atomic polarizabilities are adjustable parameters

obtained in the fit procedure139 (see Table 4.1.1).

TABLE 4.1.1. DRF ATOMIC POLARIZABILITIES α (BOHR3) WITH A-FACTOR 2.1304

atom atom atom

H 2.793 O 5.749 Cl 16.198
C 8.696 S 16.698 Br 23.571
N 6.557 F 3.001 I 36.988

Computational details

The DRF and RHF calculations were carried out on the Cray J932 supercomputer in

Groningen. All ADF results were calculated at a SGI PowerChallenge workstation. The

geometries of the molecules were taken as much as possible from experimental data218. The

remaining (internal) coordinates were optimized by the PM3 method in MOPAC93219.

Results and discussion

 The calculated mean polarizabilities of the 15 molecules are given in Table 4.1.2, together

with experimental data. The experimental mean values are obtained mostly from the

refractive index n  (at 5893 Å ; sodium D-line) and the Lorentz-Lorentz equation (with M

molecular weight,  macroscopic density, Nav  Avogadro's number):

n2 −1
n2 + 2

M
=

4
3

Nav  (8)

These values should be extrapolated to infinite wavelength (or zero frequency) to obtain the

static polarizability. This scales the values down by 1-4 %220,  and gives an estimate of the

experimental uncertainty when using the uncorrected values.

The experimental data can also be obtained from the Kerr constants220, but this

introduces, apart from the wavelength dependency, an additional uncertainty. One has to

make an assumption of the geometry, thereby limiting this method to (small) symmetric

molecules. The additional uncertainty has been estimated to be 5-10 %220,  giving a total

uncertainty of at least 6-14 %.

In Table 4.1.3, some experimental polarizability components are given, which were taken

from references 220 and 221. Some other components were left out, because of spurious
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assumptions that increase the uncertainty even more. If necessary, the components were

uniformly scaled to reproduce the average mean polarizability. It should be noted also, that

some experimental components reported by Applequist et al.221 are extrapolated empirical

values; i.e. experimental Kerr constants were obtained for some molecules which were then

extrapolated to similar (larger) molecules.

TABLE 4.1.2. MOLECULAR POLARIZABILITIES (BOHR3) USING TZP BASIS SET

αexp
ν αDRF αRHF αLDA αBP αLB94

Acetamidep 40.5  Rl 38.6 31.1 40.5 39.5 39.2
Acetylene t 22.5  Kg 21.9 18.0 19.6 19.3 19.2
Benzenep 70.1  Rl 61.9 61.9 66.7 65.7 65.9
Chlorinep 31.1  Kg 31.2 18.7 25.3 24.9 25.4
Cyclohexanol t 79.9  Rl 78.0 69.2 79.2 77.0 77.0
Dimethylether
p

35.0  Rg 35.4 27.6 34.8 33.8 33.4

Formaldehydep 16.5  Rg 18.3 13.5 16.6 16.3 16.1
Hydrogenp 5.3  Kg 4.9 2.6 4.8 4.6 4.7
Methylcyanide
p

29.7  Rl 29.8 24.6 28.4 27.8 28.2

Neopentane t 69.0  Rl 65.5 59.0 67.8 65.7 65.7
Propanep 42.4  Rl 42.2 35.9 42.1 40.8 41.5
TCFM t 57.5  Rl 56.5 40.0 53.2 52.8 52.7
TCMCt 70.5  Rl 68.3 54.0 66.1 65.0 66.1
TFMp 19.0  Kg 19.0 13.1 17.9 17.5 16.8
Water p 9.94  Rl 10.1 5.6 8.4 8.3 8.0

Time ~ 1 s 57 hr 9 hr 14 hr 23 hr

Average deviation ( %) -1.8
± 4. 8

-24.9
± 11.5

-6.0
± 5.8

-8.1
± 5.5

-8.2
± 5.5

Average absolute dev. ( %) 3.6
± 3.6

24.9
± 11.5

6.1
± 5.7

8.1
± 5.5

8.2
± 5.5

Relative to LB94 ( %) +2.4
± 1.9

+0.1
± 2.0

TCFM trichlorofluoromethane
TCMC trichloromethylcyanide
TFM trifluoromethane
p Molecules used to obtain DRF-parameters139

t Molecules used to test DRF-parameters
K Obtained from Kerr constants (uncertainty ca. 5 %)
R Obtained from refractive index (uncertainty ca. 0.2 %)
g Gas phase
l Liquid phase
DRF Direct Reaction Field approach result139

RHF Restricted Hartree Fock
LDA Local Density Approximation result (Vosko-Wilk-Nusair potential119)
BP Becke88 exchange120 with Perdew correlation121 potential
LB94 Van Leeuwen-Baerends (LB94) potential with correct asymptotic behavior216

ν Polarizabilities at 5893 Å
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Restricted Hartree Fock

The RHF results give an average deviation of 24.9 %, which has been reported before139, and

can be attributed to two factors. The first is the (small) basis set ; it is known that specially

constructed205-209 or large (including very diffuse functions)210 basis sets are needed to

obtain accurate results. This is especially apparent from the results of planar and linear

molecules, where the out-of-plane polarizability is very small in comparison to the

experimental and DFT results.

The second factor is the absence of electron correlation in the RHF method. Inclusion of

this correlation (by for instance Configuration Interaction, Multi Configuration SCF,

Coupled Cluster or Møller-Plesset methods) increases the work needed enormously, and can

be applied only to relatively small molecules.

TABLE 4.1.3. POLARIZABILITY COMPONENTS# (BOHR3)

αexp αDRF αRHF αLB94

x x y y zz x x y y zz x x y y zz x x y y zz

Acetylene 18.5 18.5 30.5 15.1 15.1 35.6 11.5 11.5 31.0 17.7 17.7 31.8
Benzene 82.7 82.7 45.0 74.9 74.9 35.8 74.8 74.8 36.0 83.7 83.7 41.7
Chlorine 24.4 24.4 44.5 27.3 27.3 39.0 11.0 11.0 34.2 24.8 24.8 40.0
Dimethylether 33.0 29.3 42.6 34.1 32.6 39.4 25.9 25.7 31.2 32.9 32.8 41.0
Hydrogen 4.9 4.9 6.3 4.1 4.1 6.5 0.7 0.7 6.5 4.9 4.9 7.0
Methylcyanide 25.5 25.5 38.1 24.9 24.9 39.7 19.2 19.2 35.4 25.0 25.0 42.4
Neopentane 69.0 69.0 69.0 65.5 65.5 65.5 59.0 59.0 59.0 68.6 68.6 68.6
TCFM 59.7 59.7 53.0 60.0 60.0 49.4 44.3 44.3 31.4 63.3 63.3 51.3
TCMC 69.6 69.6 72.3 67.1 67.1 70.6 53.0 53.0 56.0 68.2 68.2 84.6
TFM 19.4 19.4 18.1 18.8 18.8 19.2 13.4 13.4 12.5 19.1 19.1 17.6

Av. dev. ( %) -3.4 ± 9.4 -27.7 ± 20.5 0.9 ± 7.2
Av.abs. dev. ( %) 8.0 ± 5.9 28.1 ± 20.1 5.0 ± 5.2

# the molecules are oriented with the main symmetrical axis along the z-axis
TCFM trichlorofluoromethane
TCMC trichloromethylcyanide
TFM trifluoromethane
exp experimental polarizability components220,221 (accuracy 6-14 %)
DRF Direct Reaction Field approach result139

TZP CPHF value with TZP basis set
VII Van Leeuwen-Baerends (LB94) potential216 in basis set VII (TZ2P++)

Density Functional Theory

Much more promising and accurate are the DFT results. The results from all three potentials

in the TZP basis set give a much better accuracy (dev. 6-8 %; Table 4.1.2) for the mean values.

When using the TZ2P++ basis set (Table 4.1.4), which has been reported as the basis set limit

for (other) organic molecules210, the deviations become even smaller (LDA 5.8 %, Becke-

Perdew 3.6 %, LB94 potential 3.0 %). In both basis sets, the LB94 results are smaller than

either the LDA or the Becke-Perdew results. The DFT polarizability components show, like the

mean value, a much smaller deviation from the experimental data than the RHF results,

and is far less than the experimental uncertainty of these values.
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However, we are comparing with the uncorrected mean values. A better comparison can

then be made by calculating the (frequency dependent) polarizabilities with the frequency

corresponding to the wavelength (5893 Å) of the sodium D-line. The frequency dependent

polarizabilities from the LB94 potential in the TZ2P++ basis set are on average 2.9 % larger

than the static values, which is in good agreement with the estimated 1-4 % from

experimental data220. They are also on average 4.7 % larger than the experimental values,

which is a deviation comparable to the experimental uncertainty.

TABLE 4.1.4. MOLECULAR POLARIZABILITIES (BOHR3) USING TZ2P++ BASIS SET

αLDA αBP αLB94 αLB94

ν

Acetamide 43.7 42.6 41.2 43.1
Acetylene 23.8 23.5 22.4 23.1
Benzene 70.8 69.6 69.7 72.6
Chlorine 32.0 31.3 29.9 31.7
Cyclohexanol 82.1 79.9 80.7 82.7
Dimethylether 37.2 36.0 35.6 36.3
Formaldehyde 19.1 18.6 17.8 18.3
Hydrogen 5.9 5.5 5.6 5.8
Methylcyanide 31.2 30.5 30.8 31.1
Neopentane 69.5 67.4 68.6 70.3
Propane 43.7 42.3 42.1 44.1
TCFM 60.9 60.0 59.3 60.9
TCMC 74.6 73.3 73.7 75.2
TFM 20.7 20.3 18.6 18.9
Water 10.6 10.3 9.2 9.4

Time 32 hr 53 hr 80 hr 80 hr

Av. dev. ( %) 5.84
± 3.70

3.17
± 3.55

0.89
± 3.73

3.79
± 3.69

Av. abs. dev. ( %) 5.84
± 3.70

3.62
± 3.09

2.98
± 2.41

4.65
± 2.52

Rel. to LB94 ( %) +4.98
± 3.75

+2.35
± 3.91

+2.90
± 1.35

TCFM trichlorofluoromethane
TCMC trichloromethylcyanide
TFM trifluoromethane
LDA Local Density Approximation result (Vosko-Wilk-Nusair potential119)
BP Becke88 exchange120 with Perdew correlation121 potential
LB94 Van Leeuwen-Baerends (LB94) potential with correct asymptotic behavior216

ν polarizabilities at 5893 Å

In principle, both CPHF and TD-DFT should scale as N3,  where N is the number of basis

functions. While the CPHF method (taking about 25 % of the total CPU time) indeed

practically scales as N 3, the TD-DFT method more or less scales linearly and takes

approximately 40 % of the CPU time. Apparently the current systems are too small for the N3

behavior of TD-DFT to become dominant.
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Direct Reaction Field

The DRF approach gives polarizabilities with an accuracy of 3.6 %, at a very low

computational cost (< 1s) and with high transferability to other molecules139. It should be

noticed that, like the RHF method, some problems arise with linear and planar molecules,

where the anisotropy of the molecular polarizability (i.e. π-bonds) cannot be obtained with

interaction tensors based on the atomic positions. Adding extra fit points increases the

accuracy of the polarizabilities202, but leads also to bad interaction energies in classical DRF

energy calculations138.

Conclusions

The DRF approach provides mean polarizability values at low computational cost with an

accuracy (3-4 %) equal to experimental uncertainty139. Its only setback is the

underestimation of the anisotropy of linear and planar molecules, but that is more than

compensated with a high transferability to other molecules without the need to

reparameterize.

The RHF method gives rather poor mean polarizabilities (deviation 25 % in TZP basis),

with high cost for improvement upon these results. Even with the specially constructed

(polarized) basis sets, one needs correlated wavefunctions, thereby limiting the

applicability to small molecules.

The DFT methods give good mean values with the TZP basis set (6-8 % deviation), and

accurate values (dev. 3-6 %) with the TZ2P++ basis set. The latter needs only 3-4 times more

CPU time, so it is rather easy to improve the TZP results. It is also evident that the LDA gives

larger values than the gradient corrected potentials (+2-5 %), while the Becke-Perdew

results are substantially (2.4 %) improved by the Van Leeuwen-Baerends potential.

The impact of the frequency dependency on the polarizabilities is reflected properly by the

TD-DFT method which was shown with the Van Leeuwen-Baerends potential. The frequency

dependent polarizabilities are on average 2.9 % larger than the static values which is in

perfect agreement with the extrapolation estimate of 1-4 %.

The polarizability anisotropy is very well reproduced by all DFT methods, and the DRF

method, giving deviations (5-12 %) from experimental values within the experimental

uncertainty (6-14 %). The RHF method again shows deviations (28 %) which are large in

comparison to experimental deviations.
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.2 Accuracy of geometries

The influence of basis sets, xc potentials, core electrons and relativistic
corrections on geometries of small molecules and metallocenes

Before one can perform a quantum chemical calculation, one needs to have a structure of the

molecule; e.g. one needs to know where the atoms are positioned in space (its geometry). The

accuracy with which these geometries can be predicted by different quantum chemical

methods is a very useful thing to know, allowing an estimate of the reliability of a computed

geometry.

In a recent paper, Helgaker et al.188 presented a systematic investigation of the accuracy

obtainable with wavefunction based methods, applying a hierarchy of basis sets and

methods on a set of 19 small closed-shell moleculesa. They used Hartree-Fock (HF),

Configuration Interaction (CISD), Møller-Plesset (MP2, MP3, MP4) and coupled cluster

methods (CCSD, CCSD(T)) in Dunning’s correlation consistent basis sets (cc-pVDZ, cc-pVTZ,

cc-pVQZ)222, and looked at the mean error, standard deviation, mean absolute error and

maximum error. Hartree Fock is shown to result always in a too short bond distance, while

the inclusion of the electron correlation tends to increase it. Increasing the basis set size

tends to decrease the bond distance again. The best results are obtained when one uses the

CCSD(T) method, either in the cc-pVTZ or the cc-pVQZ basis, with an accuracy (0.0022 Å) that

is comparable to the experimental uncertainty. In another paper, Helgaker et a l .223

investigated the molecular structure of ferrocene. That study showed clearly the limitations

of using the CCSD or CCSD(T) methods. They could not calculate the gradients with these

methods, and therefore had to estimate the equilibrium Fe-ring distance in ferrocene based

on three single-point energy calculations.

In this study, a similar systematic investigation is presented where the accuracy of

geometries as predicted by Density Functional Theory is studied. The influence of the basis

set, treatment of core electrons and relativistic corrections has been investigated for several

currently available exchange-correlation potentials. The same set of 19 small molecules i s

used in the first part, to enable not only a comparison with experimental data but also with

the wavefunction based results obtained by Helgaker et al. For these molecules, the

influence of including the core electrons in the optimizations has been investigated. Besides

this set of molecules, also a set of metallocene molecules has been usedb, where not only the

inclusion of core electrons was investigated, but also the effect of scalar relativistic

corrections (with the ZORA117,224 hamiltonian). All of these calculations were performed i n

the standard available basis sets, ranging from a single zeta valence basis set (SZV, I) to a

triple zeta valence basis set plus double polarization functions (TZ2P, VII). As B3LYP122 i s

not a pure DFT potential, and needs a portion of Hartree-Fock exchange, it can not be used i n

the ADF program. To check the accuracy of it, as well as to compare the ADF basis sets to the

basis sets used in the paper by Helgaker et al.188, the geometry optimizations were performed

also with the B3LYP and BLYP potentials in the cc-pVDZ and cc-pVTZ basis sets using the

HONDO98204,225 program.

                                                                        
a The set of small molecules consists of: HF, H2O, NH3, CH4, N 2, CH2, CO, HCN, CO2, HNC, C2H2, CH2O,
HNO, N2H2, O3, C2H4, F2, HOF, H2O2.
b The metallocene set: manganocene, ferrocene, cobaltocene, nickelocene and ruthenocene.
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Computational details

In the ADF program117,187, standard basis sets are available ranging from small (SZV, I) to

large (TZ2P, VII), with for the basis sets up to TZ2P (V) the option of either to include (a l l

electron) or exclude (frozen core) the core electrons explicitly in the calculations. In the

frozen core basis sets, there are still basis functions assigned to the core electrons; the basis

functions of the valence electrons are then explicitly orthogonalized to them. As the

calculations are significantly faster when the core electrons are not included, this i s

normally the preferred option. The following standard available exchange-correlation

potentials were examined: Local Density Approximation (LDA), Becke88 exchange120

combined with Perdew86 correlation121 (Becke-Perdew), BLAP3226, Becke88 exchange120 with

Lee-Young-Parr correlation227 (BLYP), Perdew-Burke-Ernzerhof228 (PBE), Perdew-Wang

(PW91)189,229, Revised Perdew-Burke-Ernzerhof230 (REVPBE) and RPBE231.

To compare the basis sets, the cc-pVDZ and cc-pVTZ basis sets were used also for the

BLYP potential using the HONDO98 program. Moreover, also the B3LYP potential has been

used with this program in the same basis sets to enable a rough comparison with the pure

DFT xc-potentials.

Scalar relativistic corrections can be included in the calculations quite easily in ADF,

using the Zeroth Order Regular Approximation (ZORA)117,224, which is generally found to

give an accurate description of the relativistic effects. Although spin-orbit coupling i s

possible also with the ZORA approach, these effects were not included since the gradients are

not implemented yet; therefore it is not possible to optimize the geometries directly.

TABLE 4.2.1. EXPERIMENTAL BOND LENGTHS (pm)

Molecule Bond Bond length Molecule Bond Bond length

C2H2 CH 106.2 HCN CH 106.5
C2H2 CC 120.3 HCN C N 115.3
C2H4 CH 108.1 H F H F 91.7
C2H4 CC 133.4 HNC N H 99.4
CH2 CH 110.7 HNC C N 116.9
CH2O CH 109.9 HNO N H 106.3
CH2O CO 120.3 HNO N O 121.2
CH4 CH 108.6 HOF OH 96.6
CO CO 112.8 HOF OF 143.5
CO2 CO 116.0 N 2 N N 109.8
F2 F F 141.2 N 2H2 N H 102.8
H2O OH 95.7 N 2H2 N N 125.2
H2O2 OH 96.7 N H3 N H 101.2
H2O2 OO 145.6 O3 OO 127.2

Several statistical measures have been used to quantify the accuracy of the methods.

The difference between the calculated (

† 

Ri
calc ) and experimental (

† 

Ri
exp) bond length gives the

error 

† 

D i:

† 

D i = Ri
calc - Ri

exp (1)
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For each basis set (if possible, both with and without including the core electrons explicitly)

and exchange-correlation potential, the mean error 

† 

D , the standard deviation in the errors

† 

Dstd , the mean absolute error 

† 

D abs  and the maximum error 

† 

Dmax  were calculated:

† 

D =
1
n D i

i=1

n

Â

† 

Dstd =
1

n -1 D i - D ( )2

i =1

n

Â

† 

D abs =
1
n D i

i=1

n

Â

† 

Dmax = max D i (2)

Each measure characterizes a specific aspect of the performance of the xc-potentials and

basis sets. The two first measures characterize the distribution of errors about a mean value

† 

D  for a given xc-potential in a certain basis set, thus quantifying both systematic and non-

systematic errors. The mean absolute error represents the typical magnitude of the errors i n

the calculations, while the maximum error indicates how large the errors can be.

Small molecules

The experimental values for the bond lengths of the set of small molecules are given in Table

4.2.1, while the mean errors for the eight exchange-correlation potentials in basis sets I to

VII are given in Table 4.2.2, both in an all-electron and frozen core basis if available.

TABLE 4.2.2. MEAN ERRORS (pm)

In all cases, the bond lengths are on average overestimated, with an improvement of the

results as the basis set size is increased. For the frozen core basis sets, the average of the

XC-potential I II III I V V V I VII

frozen core
Becke-Perdew 5.58 4.00 1.49 1.24 0.90 - -
BLAP3 6.27 4.16 1.63 1.38 1.02 - -
BLYP 6.09 4.32 1.82 1.55 1.21 - -
LDA 4.65 3.26 0.83 0.61 0.28 - -
PBE 5.44 3.97 1.43 1.19 0.87 - -
PW91 5.47 3.81 1.31 1.08 0.74 - -
REVPBE 5.75 4.28 1.68 1.45 1.13 - -
RPBE 5.76 4.36 1.76 1.54 1.21 - -
average 5.63 4.02 1.49 1.26 0.92 - -

all electron
Becke-Perdew 5.54 3.96 1.44 1.30 0.98 0.81 0.82
BLAP3 6.20 4.09 1.58 1.44 1.09 0.92 0.91
BLYP 6.00 4.24 1.76 1.61 1.26 1.09 1.08
LDA 4.55 3.16 0.74 0.62 0.31 0.17 0.17
PBE 5.36 3.93 1.37 1.29 0.93 0.78 0.78
PW91 5.38 3.76 1.25 1.14 0.82 0.66 0.65
REVPBE 5.65 4.23 1.66 1.52 1.20 1.04 1.04
RPBE 5.76 4.33 1.74 1.61 1.28 1.12 1.12
average 5.56 3.96 1.44 1.32 0.98 0.82 0.82
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mean errors for the eight xc-potentials improves gradually from 5.63 pm in basis I to 0.92

pm in basis set V. The same trend is observed for the all electron basis sets, which show st i l l

an improvement on going from basis set V to VI of some 0.2 pm. However, going from basis

set VI to VII, no further improvement is observed, which indicates that the basis set l i m i t

has been reached (at least concerning the accuracy of geometries). The difference between

the all electron and frozen core basis sets are quite small; the all electron basis sets seem to

perform slightly better in the smaller basis sets, while the frozen core seems to give s l ight ly

better results in basis sets IV and V.

When looking at the mean errors, LDA seems to give the best performance with a mean

error for instance in basis set VI/VII of only 0.17 pm. This value is of the same order of

magnitude as was found for CCSD(T). The other xc-potentials are less accurate (~0.6-1.1 pm),

but still give results comparable with CCSD in the largest basis set. The worst results are

obtained with the BLYP, REVPBE and RPBE potentials, which are the only ones that s t i l l

give a mean error that is larger than 1 pm in the largest basis set.

The standard deviation in the mean errors is given in Table 4.2.3, which show the same

improving trend on increasing the basis set size.

TABLE 4.2.3 STANDARD DEVIATIONS (pm)

XC-potential I II III I V V V I VII

frozen core
Becke-Perdew 3.47 3.80 0.94 0.61 0.59 - -
BLAP3 3.51 4.64 1.64 1.35 1.13 - -
BLYP 3.55 4.32 1.38 1.09 0.89 - -
LDA 3.59 2.85 1.28 1.21 1.46 - -
PBE 3.55 3.75 0.89 0.56 0.60 - -
PW91 3.45 3.76 0.92 0.57 0.56 - -
REVPBE 3.49 4.03 0.97 0.61 0.53 - -
RPBE 3.35 4.07 1.00 0.65 0.52 - -
average 3.50 3.90 1.13 0.83 0.79 - -

all electron
Becke-Perdew 3.43 3.92 1.00 0.63 0.58 0.59 0.59
BLAP3 3.48 4.74 1.86 1.45 1.21 1.06 1.09
BLYP 3.53 4.40 1.55 1.16 0.95 0.83 0.85
LDA 3.56 2.94 1.04 1 . 1 7 1.39 1.53 1.50
PBE 3.55 3.88 0.92 0.63 0.57 0.61 0.61
PW91 3.44 3.87 0.96 0.62 0.57 0.57 0.58
REVPBE 3.33 4.15 1 .11 0.67 0.55 0.53 0.53
RPBE 3.39 4.22 1.16 0.71 0.55 0.51 0.53
average 3.46 4.02 1.20 0.88 0.80 0.78 0.79

Also here do the frozen core and all electron basis sets perform equally well. There are some

small differences, but not as large as the ones observed between basis sets of different size;

i.e., whereas the former differences are of the order of 0.1 pm (comparing for instance Becke-

Perdew in basis set IV), the latter are a few times larger (comparing for instance the frozen

core Becke-Perdew results in basis set III and IV respectively).
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LDA no longer performs best in this respect; although it had the smallest mean error of

all potentials, the standard deviation belonging to it is the largest (~1.5 pm in basis sets V -

VII) of all xc-potentials in the larger basis sets; in the medium basis sets, also a large

standard deviation is found for the BLAP3 potential. In fact, for the larger basis sets, a l l

potentials give more or less equal standard deviations except three: BLAP3, BLYP and LDA.

As BLYP was also one of the worst potentials in the case of mean errors, it seems that it c a n

not be used with great confidence for obtaining accurate geometries.

The mean absolute errors are given in Table 4.2.4. Just like the mean errors and the

standard deviations, they are shown to improve gradually with increasing basis set size.

TABLE 4.2.4 MEAN ABSOLUTE ERRORS (pm)

XC-potential I II III I V V V I VII

frozen core
Becke-Perdew 5.68 4.00 1.51 1.24 0.93 - -
BLAP3 6.27 4.17 1.64 1.38 1.03 - -
BLYP 6.13 4.32 1.82 1.55 1.21 - -
LDA 5.05 3.28 1.21 1.14 1.28 - -
PBE 5.61 3.97 1.45 1.20 0.92 - -
PW91 5.57 3.82 1.34 1.09 0.80 - -
REVPBE 5.87 4.28 1.68 1.45 1.13 - -
RPBE 5.78 4.36 1.76 1.54 1.21 - -
average 5.75 4.03 1.55 1.32 1.06 - -

all electron
Becke-Perdew 5.64 3.98 1.45 1.30 1.00 0.88 0.89
BLAP3 6.20 4.13 1.59 1.44 1.09 0.93 0.93
BLYP 6.06 4.26 1.76 1.61 1.26 1.09 1.09
LDA 4.97 3.20 1.00 1.11 1.24 1.31 1.29
PBE 5.55 3.95 1.38 1.29 0.97 0.86 0.86
PW91 5.49 3.79 1.27 1.15 0.87 0.76 0.75
REVPBE 5.68 4.25 1.66 1.52 1.20 1.05 1.05
RPBE 5.78 4.35 1.74 1.61 1.28 1.12 1.12
average 5.67 3.99 1.48 1.38 1.11 1.00 1.00

Again there is hardly any difference between the results from either a frozen core or an a l l

electron basis set; the difference between the averages of the frozen core and the all electron

in basis set IV is for instance 0.06 pm, while the difference between the averages between

basis set III and IV for the frozen core is 0.23 pm. The results of basis set V are still improved

on going to VI, but increasing the basis set even more (VII) doesn’t improve them any more.

So, where the accuracy of geometries is concerned, the basis set limit is reached already i n

basis set VI.

The Becke-Perdew, PBE and PW91 are found to be the best xc-potentials, as they are the

only ones that are consistently giving better results than the average for all basis sets, both

in the frozen core and the all electron basis sets. The mean error in the basis set limit of 0.89

(Becke-Perdew), 0.86 (PBE) and 0.75 (PW91) pm, are comparable or slightly better than CCSD

results (0.89 pm) in the largest basis set used by Helgaker et al. (cc-pVQZ). Although LDA
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was performing best for the mean error, in this case it is performing the worst with a n

average error of ~1.3 pm in the larger basis sets. In fact, for the all electron basis sets, LDA

does not improve upon increasing the basis set size after basis set III.

The maximum errors for the xc-potentials in a certain (frozen core/all electron) basis

set are given in Table 4.2.5. These results don’t show the gradual improvement as the basis

set is increased; for instance, going from basis I to basis II the average maximum error

increases from 10.7 to 13.4 pm. However, after increasing the basis set even more, i t

decreases again gradually, except for LDA that exhibits a oscillatory pattern. As the

difference between the VI and VII basis sets is small, also these results show that the basis

set limit has been reached.

TABLE 4.2.5 MAXIMUM ERRORS (pm)

XC-potential I II III I V V V I VII

frozen core
Becke-Perdew 10.52 13.16 3.35 2.51 1.81 - -
BLAP3 11.96 15.61 6.15 5.44 4.68 - -
BLYP 11.32 14.91 5.43 4.73 3.95 - -
LDA 9.88 9.69 3.30 2.32 2.85 - -
PBE 10.42 12.97 3.31 2.11 1.85 - -
PW91 10.43 12.83 3.23 2.13 1.64 - -
REVPBE 10.60 13.90 3.89 2.96 2.11 - -
RPBE 10.58 14.19 4.21 3.25 2.40 - -
average 10.71 13.41 4.11 3.18 2.66 - -

all electron
Becke-Perdew 10.42 13.42 3.98 2.68 1.82 1.75 1.75
BLAP3 11.82 15.88 6.72 5.36 4.66 4.10 4.18
BLYP 11.19 15.14 5.91 4.66 3.93 3.38 3.44
LDA 9.73 9.89 2.73 2.29 2.26 2.75 2.72
PBE 10.32 13.25 3.56 2.57 1.86 1.80 1.79
PW91 10.31 13.12 3.54 2.41 1.75 1.59 1.57
REVPBE 10.51 14.23 4.69 3.31 2.37 1.89 1.87
RPBE 10.73 14.53 5.03 3.63 2.49 2.00 2.22
average 10.63 13.68 4.52 3.36 2.64 2.41 2.44

The difference between the frozen core and all electron basis sets is not negligible for the

maximum error, at least not for the small and medium sized basis sets. For basis set V, the

difference is negligible again for some potentials (like Becke-Perdew, BLAP3 or PBE), while

for others (LDA, REVPBE) there exists a large difference.

Just like found for the mean absolute errors, there are three potentials (Becke-Perdew,

PBE and PW91) that are consistently giving better results than the average for a certain

basis set. For these three, the maximum error in the basis set limit (1.75, 1.79 and 1.57 p m

respectively) is comparable to MP2 (1.67 pm) and MP4 (1.48 pm) in the largest basis set

studied by Helgaker et al., and is substantially better than the CCSD method in the same

basis (3.07 pm).
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Comparison with Dunning’s basis set and the B3LYP potential

The results obtained with Dunning’s basis sets for either the BLYP or the B3LYP potential

are given in Table 4.2.6. Comparing the BLYP results in the cc-pVDZ basis set (e.g. [3S2P1D]

for carbon) with its ADF counterpart (basis III, [4S2P1D]), the mean absolute error of cc-pVDZ

is slightly larger than basis set III. However, the maximum error is much smaller for cc-

pVDZ than for basis III. The same inconsistencies show up for the mean error and i ts

standard deviation; although the mean error is more or less comparable (1.76 vs. 1.81 pm),

the standard deviations are quite different (1.55 vs. 1.06 pm). Therefore, as BLYP does not

perform equally well in the cc-pVDZ and the ADF-III basis set, also the B3LYP results (in the

cc-pVDZ basis) can not directly compared with the pure xc-potentials in basis III.

The size of the cc-pVTZ basis set ([4S3P2D1F] for carbon) is more or less inbetween that of

basis set V ([5S3P1D1F]) and VI ([6S4P2D1F]) of ADF. This is reflected in the mean absolute

error of the BLYP potential in the cc-pVTZ basis set (1.14 pm), which is somewhere inbetween

the results in the V (1.26 pm) and VI (1.09 pm) basis set. Also the maximum error shows th is

trend: 3.55 (cc-pVTZ), 3.93 (V), 3.38 (VI) pm. There is however a difference for the mean

error, which is 0.98 pm in the cc-pVTZ basis, but slightly larger in the ADF basis sets (1.26

and 1.09 pm for respectively basis V and VI); the standard deviation on the other hand i s

slightly lower in the ADF basis sets: 0.95 (V) and 0.83 (VI) pm vs. 0.99 pm (cc-pVTZ).

However, roughly speaking, the cc-pVTZ results for BLYP are similar to those in the V/VI

basis sets, which enables a comparison of B3LYP with the pure DFT potentials in ADF.

The mean error of B3LYP in the cc-pVTZ basis is almost zero (0.05 pm); however, the

standard deviation is almost twice as large as those of Becke-Perdew or PW91. The mean

absolute error is either comparable (PW91) or slightly better (Becke-Perdew, PBE) for the

B3LYP potential. Finally, the maximum error is slightly larger for B3LYP compared with

either Becke-Perdew, PBE or PW91. As a whole, B3LYP performs equally well as the most

accurate pure DFT potentials (Becke-Perdew, PBE, PW91), although with a s l ight ly

increased maximum error and standard deviation of the mean error.

TABLE 4.2.6 BLYP AND B3LYP RESULTS (pm) IN DUNNING’S BASIS SETS

BLYP
cc-pVDZ

BLYP
cc-pVDZ

BLYP
cc-pVDZ

BLYP
cc-pVDZ

mean error 1.81 0.98 0.66 0.05
standard deviation 1.06 0.99 0.87 0.94
mean absolute error 1.90 1.14 0.96 0.73
maximum error 3.80 3.55 2.06 1.93
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Metallocenes

Metallocenes are molecules where a metal atom is sandwiched between two cyclopentadiene

rings, which can exist in two conformations: staggered or eclipsed (see Figure 4.2.1).

FIGURE 4.2.1. STRUCTURE OF METALLOCENES

The best known example of these metallocenes is ferrocene, which has been studied in great

detail in the past by theoretical methods, and showed to be a difficult molecule for which a n

accurate prediction of the metal-ring distance could be obtained. Early Hartree-Fock

calculations reported a Fe-ring distance of 1.88 Å, which is in poor agreement with the

experimental distance of 1.66 Å. This could not be improved by employing larger basis sets,

as it was established232 that the Hartree-Fock limit is only slightly better than the early HF

calculation (1.872 Å). Normally, such a poor performance could be improved upon by u s i n g

MP2 calculations; for instance, the systematic study by Helgaker et al. (described earlier i n

this section) showed a mean absolute error of 13.0 pm for Hartree-Fock, and only 2.4 pm for

MP2. However, MP2 results on ferrocene232 show a similar dramatic performance. However,

unlike HF that overestimates the Fe-ring distance, MP2 underestimates it at 1.47-1.49 Å 232

(depending on the number of electrons correlated). Calculations employing the CASSCF and

CASPT2 method perform much better in this respect with Fe-ring distances of 1.716 and 1.617

Å respectively233. Subsequently, correcting the results for Basis Set Superposition Errors, a n

estimated equilibrium value of 1.643 Å was obtained, which is in good agreement with the

experimental value of 1.66 Å. Also CCSD and CCSD(T) calculations predict an equilibrium

distance which is in good agreement with the experimental data, with respectively 1.672 Å

and 1.660 Å223. Note however, that the coupled cluster distances were obtained by performing

single point energies at three Fe-ring distances, and then fitting the potential energy curve

with a second order polynomial to obtain the equilibrium distance.

The metallocenes studied in this section are manganocene (either doublet or sextet),

ferrocene (singlet), cobaltocene (doublet or quartet), nickelocene (singlet or triplet) and

ruthenocene (singlet). The geometry data from experimental investigations (taken from ref.

234) are given in Table 4.2.7.

eclipsed staggered
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TABLE 4.2.7 EXPERIMENTAL GEOMETRIES METALLOCENES (Å)

metal M r(C-H) r(C-C) r(M-ring)

Mn (doublet) - 1.418 1.720
Mn (sextet) 1.125 1.429 2.041
F e 1.104 1.440 1.661
Co 1.095 1.430 1.722
N i 1.083 1.430 1.823
R u 1.130 1.439 1.823

The distance of the metal to the center of the cyclopentadienyl rings differs quite some

amount for the five metal atoms as well as the multiplet state of the complex. For instance

for the manganocene, a difference of more than 0.32 Å in the distance is observed between

the doublet and sextet state.

The geometry of the metallocenes was optimized using all exchange-correlation

potentials that had been used already in the first part of this section, employing a few

different basis set sizes, ranging from a minimal basis (I) to a triple zeta valence basis p lus

double polarization functions (VI). The core electrons were either taken explicitly into

account (all electrons) or frozen in the calculations; in the latter calculations, the frozen core

electrons comprise the 1s electrons of carbon and for the first row transition metals up to

either 3p (frozen core 3p; for Ru up to 4p) or up to the 2p level (frozen core 2p; for Ru up to 3d).

For all three types, the optimizations were done in either a non-relativistic or a scalar

relativistic (ZORA) calculation. The mean absolute errors of the computed distances for the

eight xc-potentials in the four basis sets are given in Tables 4.2.8 (non-relativistic) and 4.2.9

(scalar relativistic).

A general improvement of the accuracy is shown by increasing the basis set size, which

is most obvious for the all electron calculations. The mean absolute error, averaged over the

eight xc-potentials, decreases from 7.70 pm to 1.77 pm. However, there are some potentials

that do not show this pattern; the error of the LDA potential for instance decreases in going

from basis set I (minimal basis) to II (double zeta valence), and increases if one uses larger

basis sets. The same pattern had already been observed in the first part of this section, but

there it emerged only after basis set III (double zeta valence plus polarization) and the error

in basis set IV (triple zeta valence plus polarization) was still smaller than in basis II. Here,

the LDA error is larger in basis IV than in basis II, both if one uses the frozen core or the all

electron calculations.

The difference between the frozen core 3p, frozen core 2p and all electron results is not

negligible. For the minimal basis (I), the frozen core 3p gives a better performance than the

all electron calculations; for the larger basis sets, the situation is reversed. In basis II, the

best performance is observed with the frozen core 2p option, which gives a mean absolute

error that is 0.2-0.3 pm smaller than that for the all electron case. In basis set IV, these two

options perform equally well, and considerably better (0.8-0.9 pm) than the frozen core 3p

option.
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TABLE 4.2.8. MEAN ABSOLUTE NRa ERRORS (pm) FOR 1ST ROW METALLOCENES

XC-potential I II I V V I

frozen core 3p
Becke-Perdew 7.43 2.77 2.25 -
BLAP3 6.88 5.66 4.99 -
BLYP 7.36 4.52 3.92 -
LDA 8.55 1.23 1.55 -
PBE 7.50 2.52 2.02 -
PW91 7.57 2.53 2.12 -
REVPBE 6.58 3.29 2.61 -
RPBE 7.00 3.53 2.81 -
average 7.36 3.26 2.78 -

frozen core 2p
Becke-Perdew - 1 . 7 7 1.39 -
BLAP3 - 4.58 4.05 -
BLYP - 3.49 2.99 -
LDA - 2.01 2.46 -
PBE - 1.60 1.29 -
PW91 - 1.60 1.33 -
REVPBE - 2.25 1.72 -
RPBE - 2.49 1.92 -
average - 2.47 2.14 -

all electron
Becke-Perdew 7.68 2.05 1.39 1.00
BLAP3 7.21 4.92 4.08 3.18
BLYP 7.69 3.78 3.05 2.17
LDA 8.81 1.87 2.47 3.05
PBE 7.83 1.82 1.28 1.11
PW91 7.82 1.79 1.34 1.13
REVPBE 7.30 2.53 1.72 1.18
RPBE 7.23 2.78 1.93 1.30
average 7.70 2.69 2.16 1.77

a) NR=non-relativistic results

The “best” exchange-correlation potentials are for the larger basis sets and the all

electron/frozen core 2p options, Becke-Perdew, PBE and PW91, just like found in the f irst

part of this section. For the frozen core 3p option in the larger basis sets, LDA performs best;

in basis II, the mean absolute error is even only 1.23 pm, a value not reached by any other

potential in any basis set with the frozen core 3p option. However, using the frozen core 2p or

the all electron option, this value is reached in the larger basis sets (IV, VI) by other xc-

potentials. In the minimal basis, the BLAP3 and REVPBE give generally the “best”

performance, but as the mean absolute error is about four times as large as the value in the

larger basis sets, it is of limited value.
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TABLE 4.2.9. MEAN ABSOLUTE SRa ERRORS (pm) FOR 1ST ROW METALLOCENES

XC-potential I II I V V I

frozen core 3p
Becke-Perdew - 2.47 2.01 -
BLAP3 - 5.31 4.71 -
BLYP - 4.20 3.66 -
LDA - 1.38 1 . 7 7 -
PBE - 2.22 1.78 -
PW91 - 2.26 1.88 -
REVPBE - 2.97 2.35 -
RPBE - 3.22 2.56 -
average - 3.00 2.59 -

frozen core 2p
Becke-Perdew - 1.54 1.18 -
BLAP3 - 4.21 3.66 -
BLYP - 3.14 2.63 -
LDA - 2.31 2.76 -
PBE - 1.40 1.07 -
PW91 - 1.41 1 .11 -
REVPBE - 1.93 1.44 -
RPBE - 2.12 1.59 -
average - 2.26 1.93 -

all electron
Becke-Perdew 7.83 1.72 1.19 1.22
BLAP3 7.37 4.53 3.69 2.74
BLYP 7.85 3.43 2.67 1.76
LDA 8.97 2.18 2.80 3.42
PBE 7.92 1.58 1.06 1.38
PW91 7.97 1.59 1.15 1.39
REVPBE 7.40 2.17 1.45 1.08
RPBE 7.33 2.39 1.59 1.12
average 7.83 2.45 1.95 1.76

a) SR=scalar-relativistic results using ZORA approach

The influence of the scalar relativistic corrections is, apart from the all electron

calculations in basis VI, small (0.2 pm) but improving. This effect is of the same order of

magnitude as the effect observed due to a slight mismatch between the energy expression

and the potential in the ZORA approach, which leads to an optimized geometry with zero

gradient that may differ from the point of lowest energy by some 0.1 pm. Therefore, the effect

of the relativistic corrections can safely be ignored.

The all electron results in basis VI show different patterns for different xc-potentials.

For some, like Becke-Perdew, PBE and PW91, the mean absolute error increases relative to

the non-relativistic results, while for others, like LDA, the error decreases. Still, these

changes are of the same small magnitude (0.2 pm) and therefore not significant.
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TABLE 4.2.10. MEAN ABSOLUTE SR/NRa ERRORS (pm) FOR RU-RING DISTANCE

XC-potential II/NR IV/NR II/SR IV/SR V/SR

frozen core 3p
Becke-Perdew 9.01 6.69 6.84 4.54 -
BLAP3 15.64 13.43 13.02 10.89 -
BLYP 13.44 11.36 10.90 8.91 -
LDA 3.52 1.60 1.68 0.41 -
PBE 8.18 5.75 6.13 3.63 -
PW91 8.61 6.12 6.18 3.92 -
REVPBE 9.30 6.79 7.20 4.68 -
RPBE 9.72 7 . 1 7 7.63 5.04 -
average 9.68 7.36 7.45 5.25 -

frozen core 2p
Becke-Perdew 5.59 3.57 3.99 1.82 -
BLAP3 11.90 9.91 9.89 7 . 7 7 -
BLYP 9.84 8.07 7.91 5.99 -
LDA 0.39 1.28 1.02 2.96 -
PBE 4.82 2.73 3.36 0.99 -
PW91 5.12 3.21 3.54 1.32 -
REVPBE 5.87 3.62 4.29 1.91 -
RPBE 6.25 3.97 4.65 2.25 -
average 6.22 4.55 4.83 3.13 -

all electron
Becke-Perdew - - 4.82 2.47 1.18
BLAP3 - - 10.83 8.64 7.42
BLYP - - 8.81 6.77 5.52
LDA - - 0.27 2.49 3.83
PBE - - 4.16 1.64 0.33
PW91 - - 4.22 2.10 0.60
REVPBE - - 5.17 2.62 1.29
RPBE - - 5.56 2.99 1.65
average - - 5.48 3.72 2.73

a) NR=non-relativistic; SR=scalar-relativistic results using ZORA approach

For the first row transition metals, the effect of the inclusion of relativistic corrections

is small, but for ruthenocene, it probably can no longer be safely ignored. As the relativistic

corrections will have an effect mainly on the Ru-ring distance and not as much on the C-C or

C-H distances, only the Ru-ring distance is taken into account for the mean absolute error.

The errors for the xc-potentials in several basis sets and with different options for the core

electrons are given in Table 4.2.10. As expected, the relativistic corrections now do have a

significant effect on the values of the mean absolute error, which are improved by a n

amount of 1.4-2.2 pm. The same trends are observed as before, e.g. generally speaking the

error decreases with increasing basis set size (apart from the LDA potential), the frozen core

2p option performs better than the frozen core 3p option (except for the LDA potential), the

BLAP3 and BLYP perform significantly less than the other potentials.
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The multiplet states of cobaltocene, nickelocene and manganocene lead in all cases to

the same ground state, respectively a doublet (cobaltocene), triplet (nickelocene) and doublet

(manganocene). The other states are less favored by an amount of 21 kcal/mol (quartet

cobaltocene), 14 kcal/mol (singlet nickelocene) and 14 kcal/mol (sextet manganocene) with

the Becke-Perdew xc-potential in basis set IV using the all electron option. These values

differ by a few kcal/mol with different basis sets and/or xc-potentials, but the relative

ordering of the multiplet states does not.

The relative ordering of the conformations of the metallocenes is also rather constant

over the range of xc-potentials and basis sets; in nearly all cases the eclipsed conformation i s

favored. The energy difference between the two conformations however differs between the

different metallocenes, respectively 0.4 kcal/mol (doublet cobaltocene), 0.1 kcal/mol

(quartet cobaltocene), 1.0 kcal/mol (ferrocene), 1.2 kcal/mol (doublet manganocene), 0.01

kcal/mol (sextet manganocene), 0.1 kcal/mol (singlet or triplet nickelocene) and 0.5

kcal/mol (ruthenocene), using the Becke-Perdew xc-potential in basis set IV. For quartet

cobaltocene, sextet manganocene and nickelocene, the energy difference is too small to be

considered significant, and both conformations are equally favorable. Again, these values

change somewhat by using another xc-potential and/or basis set, but the relative ordering of

the conformations remains roughly intact.

Conclusions

The geometries of a set of small molecules were optimized using eight different exchange-

correlation potential in a few different basis sets of Slater type orbitals, ranging from a

minimal basis (I) to a triple zeta valence basis plus double polarization functions (VI). This

enables a comparison of the accuracy of the xc-potentials in a certain basis set, which can be

related to the accuracies of wavefunction based methods like Hartree-Fock and Coupled

Cluster. Four different checks are done on the accuracy by looking at the mean error,

standard deviation, mean absolute error and maximum error. It is shown that the mean

absolute error decreases with increasing basis set size, and reaches a basis set limit at basis

VI. With this basis set, the mean absolute errors of the xc-potentials are of the order of 0.7-1.3

pm, which is comparable to the accuracy obtained with CCSD and MP2/MP3 methods.

In the second part of this section, the geometry of five metallocenes is optimized with the

same potentials and basis sets, either in a non-relativistic or a scalar relativistic

calculation using the ZORA approach. For the first row transition metal complexes, the

relativistic corrections have a negligible effect on the optimized structures, but for

ruthenocene they improve the optimized Ru-ring distance by some 1.4-2.2 pm. In the largest

basis set used, the absolute mean error is again of the order of 1.0 pm. As the wavefunction

based methods either give a poor performance for metallocenes (Hartree-Fock, MP2), or the

size of the system makes a treatment with accurate methods like CCSD(T) in a reasonable

basis set cumbersome, the good performance of Density Functional Theory calculations for

these molecules is very promising. Even more so as DFT is an efficient method that can be

used without problems on system sizes of this kind, or larger.



4
.3 Validation of charge analyses

The concepts of molecular recognition, electron withdrawing/donating
groups and electrophilic substitution reactions

Assigning atomic charges in quantum chemical calculations has mainly two purposes:

either they should be used in a subsequent classical mechanics calculation, or they should

be used as a simple interpretation of the distribution of charge density within the molecule.

An important example in both cases is the field of molecular recognition, i.e. how do

molecules “feel” the presence of other molecules. The largest contribution to the way

molecules “feel” each other is given by electrostatic interactions between the permanent

multipole moments of the molecules. Therefore, it is important that the atomic charges give

a good representation of the permanent multipole moments of the molecule. Furthermore,

the atomic charges should be able to reproduce “chemical intuition”, like for instance with

the concept of electron withdrawing/donating groups.

In this section, a few standard charge analyses that are available in the ADF

program117,187 are tested on their ability to give a good description for both of the

aforementioned purposes. The tested analyses are the Mulliken235 charge analysis, the

Hirshfeld analysis236, the Voronoi Deformation Density analysis117 and the Multipole

Derived Charge analysis183 (described in more detail in Section 3.1). The charge analyses are

tested on benzene and some benzene derivativesa, which enables to check the concept of

electron withdrawing/donating groups, as well as to check electrophilic substitution

reactions.

All molecular multipole moments reported in this section are obtained relative to the

center of mass of the molecule.

Molecular recognition

The electrostatic potential in a point rs due to the charge density (r i) of a molecule is

obtained as:

Vel.st . rs( ) =
ri( )

rs − ri
dri∫ (1)

This can be expanded in a molecular multipole expansion within the Buckingham

convention179,180 as:

  
Vel.st . rs( ) =

Q

r
+

⋅ r

r3 + 1
2

r ⋅ ⋅ r

r5 + L (2)

with the molecular charge Q, dipole moment µ, quadrupole moment Θ, and distance vector r

with length r. For normal purposes, the expansion can be cut off after the quadrupole

                                                                        
a The substituent groups used for the benzene derivatives are: trifluoromethyl, cyanide, aldehyde,
chloride, fluoride, methyl, NH2, NO2, OCOH, OH, OMethyl, O-minus and SH2.
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moment term, as the contribution to the electrostatic potential is decreasing with increasing

multipole level due to the division by r to the power x, where x increases with increasing

multipole level.

For all analyses studied here, except the Multipole Derived Charge analysis183, there is

no constraint on the charge analysis to reproduce any of the molecular multipole moments

other than the total charge. This leads to rather large absolute deviations between the

expectation value of the molecular multipole moments of the benzene derivatives, and the

multipole moments obtained from either the Mulliken, Hirshfeld or Voronoi charges (see

Table 4.3.1). The dipole moments deviate on average some 0.2-0.3 a.u., while it is even worse

for the quadrupole moments. The Mulliken analysis is in both cases giving the largest

deviation, with even an average absolute deviation for the xx, yy and zz components of the

quadrupole moment of 10.3 atomic units.

The same trend is obtained for benzene, where the first non-zero multipole moment is

the quadrupole moment. The expectation value for its zz-component is –5.568, which is well

reproduced by the Multipole Derived Charge analysis183 with a value of –5.595 a.u.; the

Hirshfeld and Voronoi analyses perform less with values of –2.026 and –2.272 respectively.

The Mulliken analysis again performs rather poorly, and even predicts a quadrupole

moment with the wrong sign: +8.883 a.u.

TABLE 4.3.1. AVERAGE ABSOLUTE DEVIATIONS (A .U .) FROM THE EXPECTATION

VALUE OF MOLECULAR MULTIPOLES OF BENZENE AND BENZENE DERIVATIVES

analysis charge dipole quadrupole quad. xx/yy/zz

Mull iken 0.0 0.30 5.27 10.29

Hirshfeld 0.0 0.26 1.39 2.56

Voronoi 0.0 0.23 1.24 2.28

MDC 0.0 0.03 0.30 0.49

Although also the charges from the Multipole Derived Charge analysis183 give

molecular multipoles that deviate to a small extent from the expectation value of the

multipole moments, there is a difference in the reason why these deviations occur. Unlike

the other analyses, the molecular multipole moments are by construction constrained;

however, the analysis uses the moments from the fitted density, not from the “exact” density

(see Section 3.1). There are some small differences between the two sets of multipole

moments, which results in the deviations reported in Table 4.3.1.

Electron withdrawing or donating effects

Atoms and functional groups can be organized according to their ability to donate or

withdraw electrons either by inductive or resonance effects237 (see Figure 4.3.1). For many

substituent groups, both effects work in the same direction, but there are some groups (like
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the halogen atoms) that exhibit opposing effects for the two cases. These abilities to donate or

withdraw electrons have a marked effect on reaction rates for several organic reactions.

Cl C C Cl C CCl C C

Inductive Resonance

FIGURE 4.3.1. INDUCTIVE AND RESONANCE SUBSTITUENT EFFECTS

In the last part of this section, a typical organic reaction that shows a large dependence on

substituent effects will be considered. The substituent effects found can either be due to

(de)stabilization of the ground state or (de)stabilization of the transition state of this

reaction. This part of the section only deals with the inductive effects, as these are the ones

involved in the ground state properties of the molecules. In the last section, also the

resonance effects will be taken into account.

In Table 4.3.2, the substituent effects on the charge distribution is presented as

predicted by the four charge analyses. These effects are obtained by taking the difference

between the charge of a hydrogen atom in benzene and the total charge of the substituent

groups, which are corrected for the change of total charge of the molecule (as in the case of O-

and SH2
+). A negative value indicates therefore an electron-withdrawing effect, a positive

value an electron-donating effect.

TABLE 4.3.2. INDUCTIVE SUBSTITUENT EFFECTS

substituent Mulliken Hirshfeld Voronoi MDC

CF3 +0.110 –0.091 –0.088 –0.170

CN +0.014 –0.191 –0.204 –0.273
COH +0.046 –0.129 –0.122 –0.170
Cl –0.043 –0.079 –0.124 –0.194
F –0.453 –0.138 –0.129 –0.285
Me +0.073 –0.031 –0.010 +0.058

NH2 +0.095 +0.019 +0.028 –0.245

NO2 –0.036 –0.198 –0.203 –0.378

OCOH –0.161 –0.143 –0.156 –0.354
OH –0.074 –0.063 –0.044 –0.204
OMe –0.057 –0.047 –0.042 –0.240
O– +0.421 +0.485 +0.432 +0.140

SH2
+ –0.313 –0.389 –0.429 –0.520

Experimentally237, electron-donating inductive effects are found for O- and the methyl

group, while the other substituents are found to have an electron-withdrawing effect.
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The Mulliken analysis does not perform completely reliable in this respect. It predicts

for instance electron-donating effects for CF3, CN, COH, NH2, while this should be a

withdrawing effect. However, for the other groups, the correct effect is predicted. The

Hirshfeld and Voronoi analyses perform equally here, in that they both predict the correct

effects except for two cases: methyl and NH2. For the first a donating effect is predicted and

for the second a withdrawing, while in both cases it should be opposite. Generally speaking

though, they perform better than the Mulliken analysis, but not as good as the Multipole

Derived Charge analysis183. This analysis gives a good prediction for the substituent effects

for all cases, including the cases where the other analyses fail.

Electrophilic substitution reactions

In electrophilic aromatic substitution reactions, substituent groups have two effects. They

have an effect on the reaction rate as well as on the position of the substitution. This is

because the reaction may proceed at either the ortho, meta or para position (see Figure 4.3.2).

S

+ E+

S

E

S

E

S

E

ortho

meta

para

-H+

FIGURE 4.3.2. ELECTROPHILIC AROMATIC SUBSTITUTION REACTION

Upon bonding of the electrophile E+ to the benzene ring, a cyclohexadienyl cation is formed

that is stabilized by resonance (as indicated for the ortho position in Figure 4.3.3). For both

the ortho and para positions, a resonance structure is available where the positive charge is

adjacent to the substituent (Figure 4.3.3, structure on the right), while the meta

intermediate does not have such a structure. Therefore, if the substituent is electron-

donating through resonance, it will stabilize the cation intermediate and enhance the
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reaction. Because of the delocalization of positive charge between the ring and substituent in

the case of ortho or para addition, this substituent leads primarily to ortho and para

substitution products. On the other hand, if the substituent is electron-withdrawing

through resonance, the reaction will proceed slower and the product will be primarily meta

oriented.
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E

H
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E

H

E

H

S

FIGURE 4.3.3. INTERMEDIATE CATION FORMED

An exception to these simple pictures is given by the halogen atoms. Chlorobenzene

undergoes nitration about 1
30  as fast as benzene, but the orientation is ortho-para. Here, the

difference between inductive and resonance electron withdrawing/donating effects play a

role. The inductive electron-withdrawing effect slows down the reaction, yet the  resonance

electron-donating effect favors the ortho/para oriented products.

TABLE 4.3.3. CHANGE IN CHARGE OF O, M AND P-POSITIONED ATOMS (0.01 A .U .)

a b c d e f g h i j k l m

Mulliken

o 5.0 2.6 3.2 -1.6 -6.1 2.3 -3.5 2.8 -1.1 -6.3 -6.4 -11.1 1.5

m -0.6 -0.4 -0.9 -0.4 0.1 -0.8 -0.8 -0.7 -0.4 -0.6 -0.9 -3.3 2.9

p 1.6 2.3 2.1 0.5 -0.8 -0.4 -2.9 2.5 -0.1 -1.6 -1.8 -7.2 3.3

Hirshfeld

o 0.7 1.8 1.7 -1.0 -1.5 -0.5 -2.7 1.3 -0.6 -2.2 -2.3 -7.1 1.7

m 0.9 1.1 0.7 0.5 0.6 -0.2 -0.5 1.3 0.6 0.1 -0.2 -5.1 4.4

p 1.3 1.5 1.6 -0.1 -0.6 -0.6 -2.7 2.0 0.1 -1.6 -1.7 -9.0 4.5

Voronoi

o 1.3 1.7 1.8 -0.5 -2.3 -0.6 -3.0 1.6 -0.7 -2.9 -2.8 -5.7 1.4

m 0.8 0.8 0.4 0.6 0.9 0.1 0.3 0.8 0.7 0.4 0.4 -2.7 3.2

p 1.2 1.4 1.7 0.0 -0.3 -0.3 -2.3 1.7 0.1 -1.1 -1.5 -7.1 3.3

MDC

o 0.0 2.2 0.9 0.8 -3.0 3.2 -6.1 -0.2 -3.5 -3.7 1.8 -10.0 2.6

m 0.4 -0.7 -0.5 -0.3 -0.8 -1.1 -0.9 -1.2 -1.0 -0.6 -0.8 -6.3 3.4

p 1.1 1.9 3.0 0.2 -1.6 -2.6 -4.8 2.4 -0.3 -3.1 -3.3 -9.3 3.6

a: CF3, b: CN, c : COH, d: CL, e: F, f: Me, g: NH2, h : NO2, i: OCOH, j: OH, k : OMe, l: O–, m : SH2+
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Here we check the ability of the charge analyses to predict the orientational substituent

effect by checking the charges on the carbon atoms at the ortho, meta or para positions. In

Table 4.3.3, the change of charge for the carbon atoms in the ortho, meta and para positions is

given relative to the charge of carbon in benzene. As the reaction involves a positively

charged electrophile, either of the ortho, meta or para positions will be favored if the charge

on the carbon atom will be more negative, and unfavored if it is less negative. These values

can not be used in a strict sense, as both the reaction rate and orientation preference depend

on the energies of the transition states leading to the cation intermediate, and not on the

charges on the atoms. However, some trends can be observed for the resonance effects. The

resonance electron-withdrawing effects237 of NO2, CN and COH is well predicted by all charge

analyses, leading to a favored meta oriented product. Also the resonance electron-donating

effects237 of for instance OH or NH2 leading to ortho/para oriented products is predicted well

by all analyses.

Conclusions

Four charge analyses (Mulliken, Hirshfeld, Voronoi Deformation Density and Multipole

Derived Charges) have been tested on three properties. The first is their ability to reproduce

the molecular multipole moments, which is of great importance for molecular recognition.

The Multipole Derived Charges give a good representation of the molecular multipoles by

construction, while the other three analyses perform poorly (Mulliken) or reasonable

(Hirshfeld, Voronoi). For the last three methods, the average absolute deviations of the

multipole moments is of the order of 0.2-0.3 a.u. for the dipole moment, and 5.3 (Mulliken) or

1.3 (Hirshfeld, Voronoi) a.u. for the quadrupoles.

The second investigated property is the inductive electron-withdrawing/donating effect

of substituents. The same trend is shown as for the multipole moments: the Mulliken scheme

predicts a wrong substituent effect in four cases, Voronoi and Hirshfeld in two cases, while

the Multipole Derived Charges predict the correct effect in all cases.

The last property studied is the substituent effect on the ortho/meta/para-orientation of

an electrophilic aromatic substitution reaction. However, as the orientation preference is

determined completely by the energy of transition states, and not charges of atoms, this can

be checked only in a qualitative way. In fact, all  four analyses are found to give a good

prediction for the orientation of electron-withdrawing (like CN or NO2) or electron-donating

(like OH or NH2) groups by resonance.


