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SUMMARY

Two methods are presented to obtain force field parameters that are
needed in classical mechanics calculations. A new charge analysis is
presented that provides atomic charges that reproduce by construction
the atomic and therefore also the molecular multipole moments, and a
new method to obtain from quantum chemical Hessian matrices force
constants for the bonding interactions in classical mechanics is
discussed.



3
.1 Multipole derived charge analysis

A charge analysis derived from an atomic multipole expansion

The electrostatic potential from the charge density 

† 

r ri( )  of a molecule is obtained in a point 

† 

rs  asa:

† 

VC rs( ) =
r ri( )
rs - riÚ  dri (1)

However, this equation is not well suited for standard use in molecular simulations. One could

simplify the integral by using a one-center multipole expansion, but this can not be applied for larger

molecules, since one needs to go to high order multipoles. Associated with it is a large convergence

radius, outside which the expansion is valid. A better method (for instance the Distributed Multipole

Analysis167,168) is to use multipoles located at several centers (usually the atoms) with two advantages:

the order of multipoles needed is smaller and the convergence radius is per center (and smaller).

However, even these methods are cumbersome to use in simulations: all multipole moments should be

transformed from the local (i.e. the one in which they were obtained) to the global coordinate system

(i.e. the one in the simulation), which involves a number of subsequent [3x3]-transformations for each

moment (1 for dipoles, 2 for quadrupoles, etc.). A further disadvantage is that in Molecular Dynamics

simulations for the calculation of the forces the derivative of the potential is needed, making it even

more cumbersome.

A further simplification is therefore worthwhile: taking only (atomic) charges into consideration.

This reduces not only the number of interactions per pair of centers (from 10-35 to 1, depending on the

order of multipoles located at the centers), but removes also the need for transforming the moments.
The potential is then obtained from the charges 

† 

qi  at positions 

† 

ri  as:

† 

VC rs( ) =
qi

rs - rii
Â (2)

Therefore, assigning charges to atoms is an important problem in computational chemistry1, especially

in view of constructing accurate force fields for simulations using Molecular Dynamics or Monte Carlo

techniques160,161. Our interest is in the field of biochemistry, in particular copper proteins8, where the

standard force field parameters, if present, are not accurate enough to model the chemical processes

going on in the active site of the proteins. This is especially true for the study of properties like the

redox potential, where one wants to see the behavior of the protein when an electron is removed from

the system.

Many methods to obtain atomic charges from a quantum chemical calculation are available

(detailed surveys can be found elsewhere1,169,170), where there is a general preference in the molecular

modeling world for Potential Derived (PD) charges1,171. However, associated with this class of charge

analyses are several major drawbacks, all of which are related more or less to the need of a grid of

points where the quantum chemical potential is fitted by the electrostatic potential from the charges. It

results in:

– a strong dependence on the choices made for determining the grid:

                                                                   
a In atomic units (see appendix A.1 at the end of the thesis)
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– an arbitrary change in parameters results in different atomic charges

– some methods are even orientation-dependent172,173

– a strong dependence on the method how to fit the charges:

– underdetermined set of equations, multiple "solutions" possible

– numerical (in)stability

– great uncertainties in assigning charges to atoms buried within the molecule, since the potential

outside the molecule is mainly determined by the atoms near the surface1

– an enormous increase in CPU-time, since lots of 1/r terms resulting from charge-gridpoint

distances should be evaluated many times

Several authors have extended these PD-methods by introducing constraints on the atomic charges;

usually the molecular multipole moments up to some order should be conserved. This seems to make

the methods less grid-dependent, but they are still limited to a relatively small number of atoms

(approx. 20; depending on the order of the multipoles171) and still suffer from the other drawbacks.

We present here a new charge analysis based on ideas used for the Dipole Preserving Charge

analysis174, but formulated in another way and using more accurate atomic multipoles. There are

three stages involved in this method: we start by writing the molecular charge density as a sum of

atomic densities. Subsequently, from these atomic densities a set of atomic multipoles can be defined,

which can be used to get the electrostatic potential outside the charge distribution. Finally, these

atomic multipoles are reconstructed by using a scheme that distributes charges over all atoms to

reproduce these multipoles exactly. Therefore, this method does not suffer from the drawbacks of the

PD-methods.

An important feature to notice here further, is the advantage of using an atomic over molecular

multipole expansion. Close to any atom the electrostatic potential is mainly determined by the charge

distribution around that atom; or within the atomic multipole expansion, by the atomic multipoles

near to that point. This is one of the main advantages over using molecular multipoles only, when one

needs to go to high orders to get a good representation of the potential in that point (if at all).

Moreover, since the molecular multipole moments (up to order X) are reproduced necessarily by the

atomic multipoles (up to order X), our charges have the nice feature that they do not only represent

the atomic but also the molecular multipoles.

This section consists of three parts: the first deals with how to get from a molecular density to a

set of atomic multipoles, in the second we explain the distribution scheme, while in the third, we give

some results of the method.

Atomic multipoles from a multipole expansion
A molecular charge density 

† 

r  is usually obtained in a basis set expansion (with atom indices A,B, basis

functions 

† 

c j , basis function indices i,j and 

† 

Pij
AB  element ij of the density matrix):

† 

r = rAB
AB
Â = Pij

AB c i
A c j

B

ABij
Â (3)

which defines the density as a sum of atom pair densities 

† 

rAB . Next, we fit these atom pair densities by

using atomic functions 

† 

fi  (without specific details about the functions to keep the discussion general;

our choice and motivation will be specified in the ADF implementation part):

† 

˜ r AB = di
A f i

A

i
Â + d j

B f j
B

j
Â (4)

where the coefficients can be obtained from minimization of the density differences:
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† 

rAB - ˜ r AB( )2
Ú  dt (5)

The total density can now be written as a sum of atomic densities:

† 

˜ r = ˜ r AB
AB
Â = di

A fi
A

i
Â + d j

B f j
B

j
Â

Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ 

= ci
A fi

A

Ai
Â

AB
Â = ˜ r A

A
Â (6)

Furthermore, using these functions 

† 

fi , the electrostatic potential in a point s is given by

† 

VC rs( ) = VC
A rs( )

A
Â = ci

A f i
A r( )

r-rs
drÚ

iŒA
Â

A
Â (7)

Next, an atomic multipole expansion of the 

† 

r-1 term can be used:

  

† 

VC
A rs( ) =

4p
2l +1

Mlm
A Zlm

) 
R sA

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

RsA
l +1

m = -l

m =l

Â
l

Â (8)

with the real spherical harmonics 

† 

Zlm 175 and the multipole "moments" 

† 

M lm
A

 where 

† 

RsA  is the distance

vector from nucleus A to a point 

† 

rs . These "moments" can be obtained from the coefficients as:

† 

Mlm
A = c i

A fi
A r2( )r2

lZlm r2( )dt 2Ú
iŒA
Â (9)

These multipole "moments" are not equal to the multipoles from the Buckingham convention (see

Computational details), but they can be easily transformed into those by inserting the Cartesian
expressions for the 

† 

Zlm 's.

Atomic multipole derived charge analysis

We start from the atomic multipoles as they are obtained from the multipole expansion. Then for each

atom, we reconstruct the set of multipoles (up to some order X) located on that atom by redistributed
charges 

† 

qs,A  on all atoms that preserve (up to order X) that particular set of multipoles. The multipole

moments represented by the charges 

† 

qs,A  are obtained with the position vectors relative to atom A,

† 

ris,A , as:

† 

QA
repr = qs,A

s
Â

mi,A
repr = qs,Aris,A

s
Â

Q jk,A
repr = qs,A

3
2 r js,Arks,A - 1

2d jkrs,A
2( )

s
Â

Wlmn,A
repr = qs,A

5
2 rls,Arms,Arns,A - 1

2 d lmrns,Ars,A
2 - 1

2 dnlrms,A rs,A
2 - 1

2d mnrls,Ars,A
2( )

s
Â

(10)
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When the number of atoms is larger than the total number of multipole moments (per atom) to be

reconstructed, there is of course more than one way to distribute the charges. We therefore use a

weight function that falls off rapidly to keep the atomic multipoles as local as possible, i.e. as close as

possible to the atom where the multipoles are located:

† 

ws = exp
-z rs -rA

dA

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ (11)

where 

† 

dA  is the distance from atom A to its nearest neighbor, 

† 

z  an exponential prefactor and 

† 

ws  the

weight for atom s, when distributing the multipole moments of atom A.

Now, we want the redistributed charges to be as small as possible, and at the same time constrain
the represented multipoles (Q repr, m repr, Q repr, W repr) to be equal to the atomic multipoles from the

multipole expansion (Q mpe, mmpe, Qmpe, Wmpe). We achieve this by minimizing the following function
where the constraints are met by using Lagrangian multipliers 

† 

aA , 

† 

bi,A , 

† 

g jk,A , 

† 

D lmn,A :

† 

gA =
qs,A

2

2ws,As
Â + a A QA

mpe - QA
repr( ) + b i,A mi,A

mpe - mi,A
repr( )

i
Â

+ g jk,A Q jk,A
mpe - Q jk,A

repr( )
jk
Â + D lmn,A Wlmn,A

mpe - Wlmn,A
repr( )

lmn
Â

(12)

With this choice of function, we ensure that the distribution mainly takes place close to the atom A

where the multipoles are located. After taking the derivative of this function with respect to the
redistributed charges 

† 

qs,A  to find the optimal choice for the charges, the following equation is

obtained:

† 

qs,A = ws,A aA + bi,A ris,A
i

Â + g jk ,A
3
2 rjs,A rks,A - 1

2 d jkrs,A
2( )

jk
Â + D lmn,A ...( )

lmn
Â

Ê 

Ë Á 
ˆ 

¯ ˜ (13)

that shows clearly that points far away from atom A (and thus a small weight 

† 

ws) get a small

redistributed charge.

Using the constraints, we obtain for the Lagrangian multipliers:

† 

QA - qs,A
s

Â = 0   ¤

QA = a A ws,A
s

Â + bi,A
i

Â ws,Aris,A
s

Â + g jk,A
jk
Â ws,A

3
2 r js,Arks,A - 1

2 d jk rs,A
2( )

s
Â + ...

(14)

† 

mt,A - qs,Arts,A
s

Â = 0   ¤

mt,A = a A ws,Arts,A
s

Â + bi,A
i

Â ws,Arts,Aris,A
s

Â + g jk,A
jk
Â ws,Arts,A

3
2 rjs,Arks,A - 1

2 d jk rs,A
2( )

s
Â + ...

(15)

† 

Qtu ,A - qs,A
3
2 rts,Arus,A - 1

2d tu rs,A
2( )

s
Â = 0   ¤
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† 

Qtu ,A = aA ws,A
3
2 rts,Arus,A - 1

2d turs,A
2( )

s
Â + bi,A

i
Â ws,A

3
2 rts,Arus,A - 1

2 d turs,A
2( )ris,A

s
Â

+ g jk,A
jk
Â ws,A

3
2 rts,Arus,A - 1

2d tu rs,A
2( ) 3

2 r js,Arks,A - 1
2d jk rs,A

2( )
s

Â + ...
(16)

and a similar equation for the octupole moments. This results for each atom in a set of linear equations
(of size 4 when distributing up to dipole moment [

† 

Q,mi ], 10 up to quadrupoles [

† 

Q,mi ,Q jk ] and 20 up to

octupoles [

† 

Q,mi ,Q jk ,W lmn]) for the Lagrangian multipliers, which are solved by a standard 

† 

Ax = b

routine.

Finally, the values obtained for the Lagrange multipliers are used to get the redistributed atomic

charges which when summed, result in the Multipole Derived Charges (up to some order X):

† 

qs
MDC = qs,A

A
Â (17)

In the following we shall refer to the charges as MDC-D charges if the multipoles are reconstructed up

to the dipole moment, MDC-Q if up to quadrupole (recommended to be used) and MDC-O if up to the

octupole moment.

Computational details

Molecule set

We investigated a set of 31 moleculesa to obtain a good test of the quality of the method, that were

taken predominantly from ref. 171, and extended with some that were of interest to us. Furthermore, as

a second test set, we used all amino acid residues. Since we are, in this study, not interested in creating

a generally applicable force field for amino acid residues for use in MD simulations of proteins, we

took as a model for the amino acid residues a reduced conformation as they appear in proteins. I.e.
replacing the 

† 

NH3
+  and 

† 

COO-  groups by 

† 

NH2  and 

† 

CHO . In fact, this means we cut off the backbone

and replaced it by hydrogens. We are aware of the fact that this is not the standard model being used

for getting amino acid residue charges, but we like to keep the model as simple as possible. Moreover,
for a few amino acid residues, we also tested the so-called dipeptide model (

† 

CH3CONHCHRCONHCH 3)

for the side chain R, which resulted in virtually the same charges in the side-chain.

For all molecules, we first optimized the geometries, then we performed single point energy

calculations to get the molecular properties (energies, multipoles). All calculations were carried out

within the Density Functional Theory framework1 with the ADF program118,176-178 using the Becke-

Perdew exchange-correlation120,121 potential in the TZ2P (V in ADF terms) basis set. In the following

we shall make a distinction between the fitted and “exact” molecular multipole moments: the former

refer to the values obtained from the fitted density (or from the MDC charges since they represent

them exactly), while the latter refers to the values from the “exact” density.

                                                                   
a The set of 31 molecules consisted of: benzene, ethylene, methylcyanide, methyllithium, methanol, methanol
anion, methanethiol, methanethiol anion, methane, chlorine, carbonmonoxide, carbondioxide, carbondisulfide,
fluorine, hydrogen, formaldehyde, hydrogenchloride, formamide, formic acid anion, hydrogenfluoride,
hexafluorobenzene, hydrogen fluoride, lithiumhydride, nitrogen, ammonia, oxygen, dimethylether, hydroxyl
anion, phosphine, thiophene, water, water dimer
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Exponential prefactor

This left us the task to find a value for the exponential prefactor 

† 

z , which we want to make as large as

possible to keep the multipoles local. On the other hand, if we make it too big, the weight function will

approach a delta function, leading to hardly any freedom to distribute the charges over the other atoms

and numerical instabilities. We took as “optimal” value the largest value where the errors in the

represented multipoles (due to machine precision and numerical accuracies) of the amino acid

residues set were smaller than the required accuracy of the numerical integration in the calculations

(10-6 in these cases), which turned out to be 3.0.

Buckingham convention

In the literature, several conventions are being used for the multipole moments. In this study, we use

the most commonly used Buckingham convention179-181. This convention has the following

expressions for the multipole moments:

† 

mi = rridtÚ
Q jk = r 3

2 r jrk - 1
2 d jk r2( )dtÚ

Wlmn = r 5
2 rlrm rn - 1

2d lmrnr2 - 1
2dmn rlr2 - 1

2d nlrm r2( )dtÚ
...

(18)

In this convention, the electrostatic potential is obtained as follows:

† 

VC
A rs( ) =

QA
rsA

+
mirsA ,i

rsA
3

i
Â + 1

2
Q jkrsA, j rsA ,k

rsA
5

jk
Â + 1

6
WlmnrsA ,lrsA,m rsA,n

rsA
7

lmn
Â + ... (19)

Inserting the expressions for the 

† 

Zlm ’s in the multipole expansion (eqn. (8)), and rewriting them into

Cartesian components, the relation to the Buckingham multipoles can easily be derived.

All molecular multipole moments reported here have been obtained relative to the center of mass

of the molecule.

Point charges in non-atomic (dummy) positions

For small systems, a proper charge distribution can not be represented by assigning charges only to

atoms1. This is most easily seen for a homonuclear diatomic molecule like hydrogen. When using

charges on the two atoms only, all methods should result in charges of exactly zero, because of

symmetry. Adding a third (dummy) point, for instance in the center, should then result in a much

better description of the charge distribution within the molecule (see also Allen/Tildesley160,161, who

use nitrogen as an example and use 5 points with rather large charges). In practice, adding dummy

points is only necessary for small molecules, and in all cases adding one point (which is placed in bond

midway points in this section) already suffices to reproduce the multipole moments up to the

quadrupole moment.

ADF implementation

The method described in this section is generally applicable, however, we use Density Functional

Theory1 as incorporated in the ADF program118,176-178 and take advantage of the way the electrostatic

potential is being calculated there. The program uses a numerical integration scheme, by employing a
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grid around the atoms to do the integration176. It uses a basis set of Slater type orbitals117:

† 

cu r,J,j( ) = rn u -1e-a u rZlm J,j( ) (20)

centered on each atom, with an auxiliary set of (Slater-type) fitfunctions (called fit set) to approximate
the density 

† 

r  by expansion in these one-center functions 

† 

fi  with coefficients 

† 

ai 's:

† 

r r( ) = Pmn c m cn
mn
Â ª ai f i r( )

i
Â (21)

The atomic multipoles are obtained from the coefficients:

† 

Mlm
A = ai fi r2( )r2

lZ lm r2( )dt 2Ú
iŒA
Â (22)

where the 

† 

a-coefficients are obtained from a least squares minimization of the difference 

† 

DAB
between the “exact” and fitted density:

† 

DAB = rAB - ˜ r AB
2 dtÚ (23)

The electrostatic potential is now obtained as118:

† 

VC rs( ) = VC
A rs( )

A
Â = ai

fi ¢ r ( )
rs - ¢ r Ú

iŒA
Â d ¢ r 

A
Â (24)

or, by using the expansion of 

† 

rs - ¢ r  in spherical harmonics and using the exponential form of the STO

fit functions (with the exponent 

† 

ai  and the principal quantum number 

† 

ni ):

† 

VC
A rs( ) =

4p
2l + 1

Zlm rsA( )Ilm
A rsA( )

m = -l

m =l

Â
l

Â

Ilm
A rsA( ) = d l, li( )d m ,m i( )aiI n i ,li ,a i, rsA( )

iŒA
Â

(25)

The function 

† 

I  is obtained from incomplete Gamma functions, and can be written as the sum of a

multipolar and exponentially decaying part118:

† 

I n i, li ,a i , rsA( ) =
1

rsA( )li +1
ni + li + 1( )
a i( )n i + li +2 + e-a i rsA J ni , li ,a i ,rsA( ) (26)

The function 

† 

J  consists of a power series in 

† 

rsA , with 

† 

ni  as highest power, and serves as a screening

for the short-range behavior of the multipole expansion. Since the expansion with the screening is

correct inside the molecule, outside the molecule, where the screening is absent (due to the short range

of action), the expansion is also valid and thus gives the correct potential.

A lot of effort has been put in constructing appropriate fit sets, and the current standard sets are

very well qualified to reproduce electrostatic potentials inside the molecule accurately. Usually, the set

of fit functions is larger than the set of basis functions, and sufficiently large to give a good description
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of the electrostatic potential within the molecule. However, comparing the fitted molecular moments

with the “exact” values from the basis functions, we found some differences, which were due to fit set

incompleteness. To remedy this effect, we constructed a new set of fit functions by adding p and d-

functions for the atoms involved in our test set of molecules, except for hydrogen that was not altered

at all. With this new set, the differences between the “exact” and fitted molecular multipole moments

were much smaller (see Table 3.1.1 for values averaged over the set of 31 molecules). From this Table,

it can be seen that while the new fit set gives better molecular multipole moments, there is hardly any

influence on the total energy.

TABLE 3.1.1. COMPARISON OF STANDARD AND NEW FIT SET. ABSOLUTE DIFFERENCES BETWEEN

“EXACT” AND FITTED MOLECULAR MULTIPOLE MOMENTS, IN TOTAL ENERGY AND FIT TEST

DIFFERENCE, ALL AVERAGED OVER THE SET OF 31 MOLECULES (A.U.)

Extensions of the implementation

The standard fit sets in the ADF program have been constructed in order to minimize the difference

between the "exact" and fitted density, thereby obtaining from both accurate electrostatic potentials in

the system under study. However, no specific constraints were put on the functions to conserve the

molecular multipole moments. Moreover, in the standard versions of ADF, the expectation value of

only the dipole moment (from the "exact" density) is being calculated. We implemented the

calculation of the expectation value of the quadrupole moment tensor, in order to check the

represented quadrupole moments from both the "exact" and fitted densities.

In Table 3.1.1, we give the absolute differences between the molecular multipole moments from

the "exact" density on one hand, the fitted density on the other, averaged over the set of 31 molecules.

We report the values for both the standard fit set (TZ2P basis set, V in ADF terminology) as well as a

new one, where we added p- and d-functions to the fit set for the first row-atoms. We also give the

values of the fit test for both fit sets, as well as the averaged absolute energy differences between the

two fit sets. These numbers give a clear indication that there is hardly any influence on the total energy

and "exact"/fitted density difference. There is however a clear improvement of the represented

multipole moments, with an average absolute deviation of 0.10 au for the quadrupole moments.

standard new
average maximum average maximum

Qtot 0.000 0.000 0.000 0.000
mx 0.004 0.039 0.004 0.060
my 0.002 0.023 0.001 0.014
mz 0.038 0.303 0.026 0.258
Qxx 0.490 3.640 0.105 0.267
Qxy 0.047 0.807 0.035 0.413
Qxz 0.000 0.000 0.000 0.000
Qyy 0.373 1.788 0.102 0.251
Qyz 0.000 0.000 0.000 0.000
Qzz 0.685 3.577 0.139 0.502

Fit test 5.05.10-5 3.95.10-5

Energy difference 0.029 kcal/mol
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TABLE 3.1.2 COMPARISON OF MOLECULAR MULTIPOLE MOMENTS (A.U.)

Multipole DFT Exact DFT Fitted Experimental

benzene
Qxx = Qyy 2.78 2.79 3.23
Qzz -5.56 -5.59 -6.47 ± 0.37
carbonmonoxide
mz -0.07 -0.09 -0.04
Qxx = Qyy 0.76 0.74
Qzz -1.52 -1.48 -1.86 ± 0.22
carbondisulfide
Qxx = Qyy -1.35 -1.58
Qzz 2.71 3.15 3.17 ± 0.22
fluorine
Qxx = Qyy -0.38 -0.33
Qzz 0.76 0.66 0.56
hydrogen
Qxx = Qyy -0.25 -0.31 -0.24
Qzz 0.51 0.61 0.47 ± 0.03
hexafluorobenzene
Qxx = Qyy -2.99 -2.78 -3.53
Qzz 5.99 5.56 7.07 ± 0.37
hydrogenfluoride
mz -0.69 -0.69 -0.72
Qxx = Qyy -0.87 -0.95
Qzz 1.74 1.91 1.75 ± 0.02
nitrogen
Qxx = Qyy 0.561 0.490 0.76
Qzz -1.122 -0.979 -1.52
oxygen
Qxx = Qyy 0.071 0.065 0.20
Qzz -0.142 -0.131 -0.39
water
mz -0.71 -0.73 -0.73
Qxx -1.82 -1.93 -1.86 ± 0.01
Qyy 1.91 2.01 1.96 ± 0.01
Qzz -0.09 -0.08 -0.10 ± 0.02

Results

Multipole moments

Although this section is strictly speaking not concerned with the accuracy of calculating molecular

multipole moments, at least it should be established that Density Functional Theory is able to provide

reasonable values for them. As the atomic charges are constructed to represent these molecular

moments, in order to get reliable charges the molecular multipoles should be correct. In Table 3.1.2, a

few calculated molecular multipole moments are given with the corresponding experimental values.

The calculated values are given both resulting from the “exact” and fitted density to be able to compare

the difference between them also, and are obtained in the TZ2P-newfit basis set with the Becke120-

Perdew121 exchange-correlation potential.
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For benzene, the first non-vanishing multipole moment is (due to symmetry) the quadrupole

moment. The values for the axes lying in the benzene plane are equal, and are minus half times the

perpendicular value (also due to symmetry). The experimental value of –6.47 a.u. for the

perpendicular value Qzz has been obtained by induced-birefringence experiments, and is reasonably

well described by the DFT values of –5.55 (“exact” density) and –5.59 a.u. (fitted density), if the newfit

set is used. Benzene is a good example why the standard fit sets are not always adequate for use with

the new charge analysis presented here. In the standard fit set, the Qzz value from the “exact” density

doesn’t change much compared to the newfit set ( —5.60 a.u.); the value from the fitted density on the

other hand differs considerably (—9.19 a.u.). The dipole moment of carbon monoxide has in the past

served as a test case for assessing the quality of wavefunction based methods, as it was shown that for

instance Hartree-Fock predicts a dipole moment that points in the wrong direction. I.e., the negative

end of the molecule was predicted on the side of the oxygen, while in reality it should be on the side of

the carbon. In fact, the methods where electron correlation is included explicitly (like for instance

MP2, MRSDCI or CASSCF) give a proper qualitative picture. As can be seen from Table 3.1.2, the same

is true for the Becke-Perdew xc-potential. In fact, in a recent paper by de Proft et al.182, several other

DFT potentials were tested and all were shown to give a proper description as well. The same

agreement between calculated and experimental values is found for the quadrupole moments of

carbondisulfide, fluorine, hydrogen, hexafluorobenzene, nitrogen and oxygen. Hexafluorobenzene is

another striking example of the need for improved fit sets, as the value for its Qzz value from the fitted

density of the standard TZ2P fit set is 2.81 a.u., while the value from the “exact” density is 6.08 a.u. in

this standard basis set. Although the difference between the “exact” and fitted value is a bit larger than

for benzene (0.43 a.u., see Table 3.1.2) with the new fit set, it is still a considerable improvement. The

calculated values for the dipole and quadrupole moments of hydrogenfluoride and water are again in

good agreement with the experimental values.

Charges

The MDC-q charges of some molecules out of the set of 31 are given in Table 3.1.3. For a few

molecules, point charges in non-atomic (dummy) positions have been used as described earlier in this

section. In all cases, the molecular multipole moments up to the quadrupole moment have been

represented (by construction) by these charges. Benzene and hexafluorobenzene show the predicted

trend; in benzene, the electrons are more likely to be found on the carbons, while in

hexafluorobenzene, they are attracted by the more electronegative fluoride atoms, just as would be

expected from the change in sign of the Qzz value when going from benzene to hexafluorobenzene.

There are also some interesting features when comparing the diatomic molecules. Where in the case of

chlorine, fluorine and hydrogen, the charge is mainly found in-between the two atoms (as indicated by

the charge on the dummy point XX), for carbon monoxide, nitrogen and oxygen, it is found mainly on

the atoms. This is of course fully consistent with the normal picture of chemical bonding for the first

part (where the charge is mainly found in-between the atoms), while the cases of CO, N2 and O2 can be

explained by the lone pair electrons that are found on the atoms. Although from the MDC-q charges

(including a dummy point) for carbon monoxide, it seems that the more negative end is found near the

oxygen, the MDC-d charges do give the correct representation. And as the molecular multipole

moments are exactly reproduced up to the quadrupole by the MDC-q charges, also they give a proper

description for the dipole moment.

For a molecule with a non-singlet ground state (like for instance oxygen), the charge density can

be obtained for both spins separately. E.g., for oxygen with two alpha electrons in excess (triplet state),

one obtains a different charge density for the alpha and beta electrons. Resulting from these are also
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two sets of atomic multipoles; one for the alpha electrons and one for the beta electrons. From these

we can extract alpha and beta Multipole Derived Charges, which when summed result in the atomic

charge again. However, the difference between the two densities is the spin density, and as such, the

difference between the two sets of charges, the spin density charges. For oxygen, the total charge on

the atoms is small (-0.049), but the spin density charge large (-1.007), which is fully consistent with

the triplet state with one alpha electron located on one atom, and one on the other.

TABLE 3.1.3 MDC-Q CHARGES FOR SOME OF THE MOLECULES OF THE SET OF 31

Molecule Charges Molecule Charges

benzene hydrogen
qC -0.123 qH 0.610
qH 0.123 qXX -1.220
ethylene hexafluorobenzene
qC -0.250 qC 0.094
qH 0.125 qF -0.094
methylcyanide nitrogen
qC-Me 0.692 qN -0.452
qH -0.157 qXX 0.904
qC 0.203 ammonia
qN -0.425 qN -0.444
chlorine qH 0.148
qCl 0.367 oxygen

qXX -0.734 qO -0.049
carbondioxide qXX 0.098
qC 0.574 water
qO -0.287 qO 0.458
carbonmonoxide qH 0.892
qC -0.537 qXX -1.121
qO -0.852 water dimer
qXX 1.389 qH-donor 0.902

carbondisulfide qXX-donor -1.162

qC -0.351 qO-donor 0.264

qS 0.185 qH-donated 0.699

fluorine qXX-donated -0.748

qF 0.186 qO-acceptor 0.560

qXX -0.371 qH-acceptor 0.930

qXX-acceptor -1.188

For carbondioxide and carbondisulfide, the sign of the quadrupole moment is reversed; i.e.,

whereas Qzz is negative for carbondioxide, for carbondisulfide it is positive. This is reflected by the

charge of the carbon atom, which is positive for the former and negative for the latter. The larger

electronegativity of oxygen over sulphur plays a decisive role also here. The molecular dipole and

quadrupole moment of water can not be represented exactly by charges on the atoms only; putting

charges on dummy positions on both bond midway-points is however sufficient to do this. This results

in rather large charges in the dummy positions, which are again indicative for the chemical bonding

taking place. For the hydrogen bonded water dimer, depicted in Figure 3.1.1 with the donor on the left
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and the acceptor on the right, the point charges in the dummy positions were also included. This

enables a comparison with the values for water itself. Not surprisingly, the charges for the hydrogen

(and corresponding dummy point charges) not involved in the hydrogen bond do not change

significantly. The charge on the hydrogen involved in the hydrogen bond (the so-called donated

hydrogen) changes dramatically. Whereas the total of the hydrogen and dummy charge is around

–0.23 in water, for the donated hydrogen this drops down to –0.05; the difference is mainly flowing to

the oxygen of the donor molecule, whose positive charge drops down by almost the same amount.

O Hd

H

O

H
H

dummy points XX

+0.902
–1.162

+0.264
–0.748

+0.699 +0.560

+0.930

+0.930
–1.188

–1.188
O Hd

H+0.892
–1.121

+0.458
–1.121

+0.892

monomer dimer

FIGURE 3.1.1 WATER MONOMER AND DIMER WITH MDC-Q CHARGES

The charges for the amino acid residue models in vacuo we have considered are given in Table

3.1.4 for the amino acids that are found in the active site of wildtype azurin, to be able to compare

them with the values found within the active site (Section 6.1).

TABLE 3.1.4 AMINO ACID RESIDUE CHARGES FOR CYS, GLY, HIS AND MET

Atom Charge Atom Charge Atom Charge Atom Charge

cysteine glycine histidine methionine
N -1.028 N -0.798 N -0.882 N -0.882
H 0.299 H 0.237 H 0.287 H 0.332
H 0.350 H 0.232 H 0.291 H 0.280
CA 0.461 CA 1.076 CA 0.505 CA 0.361
HA -0.139 HA2 -0.249 HA -0.087 HA -0.103
CB 0.398 HA3 -0.247 CB 0.440 CB 0.496
HB2 -0.106 C 0.316 HB2 -0.109 HB2 -0.113
HB3 -0.117 O -0.517 HB2 -0.178 HB3 -0.203
SG -0.886 H -0.051 CG 0.062 CG 0.176
C 0.319 ND1 -0.613 HG2 -0.033
O -0.536 CE1 0.382 HG3 -0.057
H -0.014 HE1 0.081 SD -0.298

NE2 -0.537 CE -0.142
HE2 0.381 HE1 0.079
CD2 -0.035 HE2 0.104
HD2 0.132 HE3 0.089
C 0.390 C 0.367
O -0.471 O -0.434
H -0.039 H -0.021
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Conclusions

The charge analysis presented here gives an accurate description of the charge distribution when

obtained with an appropriate set of fit functions as we have introduced in this paper. There are a few

advantages of the method: the atomic multipoles that are reconstructed exactly by our Multipole

Derived Charges, give by construction the best fit to the electrostatic potential around the molecule.

Furthermore, with the appropriate set of fit functions the molecular multipole moments from the

fitted density can be made arbitrarily close to the ones from the “exact” density. Our Multipole Derived

Charges reproduce the fitted multipoles exactly, except in few cases (like diatomics) when there are not

enough degrees of freedom to reproduce all multipoles. Usually it is sufficient to add one extra point,

e.g. in the bond middle point of a diatomic molecule.

The molecular multipole moments, both from the fittted and the “exact” density, have a small

deviation from experimental values. Since the MDC charges reproduce the fitted values exactly, the

MDC charges give an accurate representation of the charge distribution in the molecule and result in a

good electrostatic potential.



3
.2

IntraFF force constants
Obtaining reliable force constants for use in classical Molecular Dynamics
simulations

Over the last decades, many investigations have focused on proteins containing metal atoms, both

from an experimental and theoretical point of view (see Section 1.2). The theoretical studies comprise

mainly classical Molecular Dynamics160 (MD) studies, but in the last years it has become possible to

treat (reasonable models of) the active sites of these proteins accurately by quantum chemical

methods1. However, at the present time, it is still not possible to treat the complete protein with

quantum chemical (QC) methods nor to perform reliable MD simulations (of at least 1 ns) with (part

of) the active site treated at the QC level. For the time being, one therefore has to treat the active site

completely classically. This raises a problem, because the interactions of metal atoms are difficult to

generalize in terms of a simplified classical force field1. We resolve this issue by performing a QC

calculation prior to the MD simulation to obtain force field parameters that can be used subsequently

in the simulation and which are typical for the particular system under study. The necessary

parameters can be divided into two groups: bonded and non-bonded. The latter consist of Lennard-

Jones parameters (which have already been parameterized in the GROMOS96 force field127) and

atomic fractional charges. The charges can be obtained accurately with Density Functional Theory

calculations by using the Multipole Derived Charge analysis183. We are therefore left with obtaining

parameters for bonded interactions.

The most commonly used way to treat these bonded interactions classically is by using a

harmonic potential for bonds and bond angles:

U C( ) = 1
2 KC C − Ceq( )2

(1)

where Ceq is the equilibrium value of the coordinate (bond/angle), and KC  a force constant typical for

that particular bond/angle. A small force constant implies great flexibility in the coordinate while a

large value is found for stiff bonds/angles. For dihedral angles  one normally takes a periodic

function:

U( ) = K 1+ cos n − shift( )( ) = K 1+ cos n − eq( ) −( )( )
shift = n eq +

(2)

where n stands for the periodicity of the dihedral angle. Note that GROMOS96127 uses a quartic

potential (see Appendix 3.2) for bonds, which was introduced only to avoid the square root

operation in the calculation. The deviations from the harmonic potential however show up only at high

energies (i.e. at large deviations from the equilibrium position) that are normally never reached in

simulations. The IntraFF method can also be used to obtain the force constant for this quartic

potential.

Seminario proposed a method (FUERZA)184 to get the force constants (FC’s) directly from the

Hessian matrix (a matrix of second derivatives of the energy with respect to atomic coordinates) as

obtained in QC calculations. The method is invariant for the choice of internal coordinates, but the

particular formulas he used for getting the force constants are not related directly to the classical
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energy expressions. They result for instance in low values for bending constants, which is corrected for

by adding extra nonphysical bonds. In his definition, two atoms are bonded if the energy increases

when one of the two is moved in any direction, no matter how far apart the atoms are. For instance,

the hydrogen atoms in water are bonded with a force constant of 31 kcal/mol/Å2. Although it is true

that these hydrogens are “bonded”, the interaction between them has already been accounted for by

the angle (bending) interaction.

In this study we report a new method (IntraFF) for obtaining force constants from QC

calculations, that is based on ideas by Seminario184, but with formulas taken from the classical energy

expressions as used in the force fields, in which the total energy is a sum of contributions from

separate internal coordinates (like bonds, angles and dihedrals). Each of these contributions consists

of a force constant KC and a FC part:

Utotal = UC
C
∑ = KC FC

C
∑ (3)

The FC part depends on the coordinates of only those atoms that are involved in the internal

coordinate C. Likewise, the Hessian (3Nx3N matrix for a system of N atoms containing the second

derivatives of the energy with respect to the atomic Cartesian coordinates) is also a sum of

contributions from the separate internal coordinates. The force constants KC are obtained from the

quantum chemical Hessian; they could be obtained by fitting the Hessian from the force field (FF) to

the quantum chemical Hessian, but by doing so one already has to make a choice for the coordinates to

be included in the force field, and the force constant values will depend on this choice. Instead, in the

IntraFF method a direction vector is chosen for each internal coordinate C, which is characteristic for

the coordinate; if the atoms involved in a coordinate are displaced by an infinitesimal amount along

the direction vector of the coordinate, it will lead to a force working on the atoms, which is determined

by the relevant part of the (QC or FF) Hessian. By minimizing the difference between the QC and FF

infinitesimal forces, an expression is obtained in which the force constants are uniquely determined

(see eq. (14)).

Therefore, just like the FUERZA scheme of Seminario184, our method is invariant for the choice of

coordinates used. The equations for harmonic potentials applied to molecules in their equilibrium

structure will be derived first. Then, we will discuss the specific details for the direction vectors needed

for these equations, and the harmonic equations will be extended for molecules in a non-equilibrium

structure. Subsequently, the equations for an anharmonic potential are presented, followed by the a

normal mode analysis part and finally the results for some molecules.

A final subject that should be addressed here concerns the nomenclature of the different

coordinate systems that are in use. Although the term internal coordinates has been used for many

different kinds of coordinate sets, we use it for the molecular internal coordinates such as bonds,

angles and dihedral angles. The coordinate system consisting of the normal mode vectors will be

referred to as normal mode coordinates. Together with the Cartesian coordinates these sets of

coordinates are complementary and sufficient.

Harmonic potentials for molecules in equilibrium geometries

First, we will have to make the connection between the quantum chemical description and the classical

force field description. This can be achieved if we expand the energy U  to second order in a Taylor

series about the atomic coordinates r. For this we need a direction vector d = r  which has a special
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meaning in our analysis (more details will be given later on); it will be shown that it should be

representative for a certain internal coordinate. For the moment however, we will keep the discussion

general and let the vector be arbitrary. We then get the following expression for the Taylor series (up to

second order):

U r + d( ) = U r( ) + dTG r( ) + 1
2 dT H r( )d (4)

where G r( )  stands for the gradient and H r( )  for the Hessian, with for atoms i, j  the elements:

Gi, p =
∂U r( )
∂ri, p

Hi, p; j ,q =
∂2U r( )
∂ri, p∂rj,q

ri, p ∈ xi ,y i ,zi{ }

(5)

By definition, an equilibrium geometry is characterized by a zero gradient. Thus, the Taylor expansion

leaves us with an expression for the change in energy that contains only a quadratic term (just like the

classical harmonic expression [eq. (1)]):

U req + d( ) −U req( ) = 1
2 dT H req( )d (6)

In principle, we could try and fit the Hessian matrix of the classical force field to the quantum

chemical Hessian matrix. However, our method would then not be invariant to the choice of internal

coordinates any longer, since we would have to choose which internal coordinates are used in the fit.
It would be more convenient to obtain the force constant for a given internal coordinate as if it

were an independent parameter, like it is used also in most of the popular force fields. This can be

achieved by looking at the change in gradient if a certain internal coordinate is changed by an

infinitesimal amount, as proposed by Seminario184. For this, we expand not the energy but the

gradient in a Taylor series, and obtain a formula for the gradient change G  (called infinitesimal

gradient) that is linear in both the Hessian and the direction vector:

G r + d( ) − G r( ) = G = H r( )dC (7)

This expression is valid for both the classical (FF) and the quantum chemical (QC) Hessian, and

results in the classical ( GCL) and quantum chemical ( GQC ) infinitesimal gradients. At this point, we

have used the direction vector dC  with its special meaning as will be discussed later on, since it should

be representative for the internal coordinate we are interested in. We will delay the discussion about

the form of this direction vector until later, since its specific details are not important for formulating

the analysis, as long as the vector is representative for a certain internal coordinate. Now, we want to

find a value for the force constant such that the difference between the FF and the QC infinitesimal

gradient is minimized. This is achieved by using a least squares fit of the difference between the

infinitesimal gradients:

∆G = 1
2 GCL − GQC( )T

GCL − GQC( ) (8)
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The best value for the force constant KC  is then obtained if the derivative of this least squares function

with respect to the force constant is zero:

∂∆G

∂KC

= 0 → GCL − GQC( )T ∂ GCL − GQC[ ]
∂KC

= 0 → GCL − GQC( )T ∂ GCL[ ]
∂KC

= 0 (9)

The last part results from the fact that only the classical Hessian (and therefore the classical

infinitesimal gradient) depends on the force constants. The derivative of this infinitesimal classical

gradient with respect to KC  is obtained from the derivative of the classical Hessian with respect to the

force constant. I.e., substituting the expression for the infinitesimal gradient (eq. (7)) into the last part

of eq. (9), and taking the direction vector dC  outside the derivative expression, we obtain:

GCL − GQC( )T ∂ HCL r( )dC[ ]
∂KC

= 0 → GCL − GQC( )T ∂HCL r( )
∂KC

dC

 

 
 

 

 
 = 0 (10)

Now, we have to establish how the classical Hessian depends on the force constant KC . In the

harmonic approximation, the classical Hessian has the following form:

Hri , p ;rj , q

CL = KC C − Ceq( ) ∂ 2C

∂ri, p∂rj ,q

+
∂C

∂ri, p

∂C

∂rj ,q

 

 
 
 

 

 
 
 C

∑ = KC HC
*

C
∑

ri, p ∈{x i, yi ,zi}

(11)

It is a sum over products of the force constants KC  of the internal coordinates times a matrix that

depends only on the coordinates of the atoms involved in that internal coordinate. The derivative of

the total Hessian with respect to the force constant KC  of one coordinate is then independent of the

other coordinates, and independent of KC :

∂HCL

∂KC

= HC
* (12)

After putting this result into eq. (10), the only term in it that still depends on the value of KC  is the

infinitesimal gradient GCL . We make it more explicit by combining the outcome of eq. (11) with eq.

(7):

GCL = HCL dC = KC HC
*{ }dC = KC HC

* dC( ) = KCVC (13)

It results in a multiplication of the scalar KC  with a vector VC , which can be combined with eq. (10) to

finally get an expression for the force constant KC :

GCL − GQC( )T
HC

* dC[ ] = 0 → GCL
T HC

* dC[ ] = GQC
T HC

* dC[ ] →

KCVC
T HC

* dC[ ] = GQC
T HC

* dC[ ] → KC =
GQC

T HC
* dC[ ]

VC
T HC

* dC[ ] =
HQC

* dC[ ]T
HC

* dC[ ]
HC

* dC[ ]T
HC

* dC[ ]
(14)
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Although we have used the harmonic potential as an example here, this expression can in fact be used

for any potential for which the Hessian can be written as a product as in eq. (11). Therefore, eq. (14) is

also valid for the quartic GROMOS96127 potential as well as the cosine function that is normally used

for proper dihedrals (see Appendix 3.2 for the expressions of the classical Hessian of the potentials

described in this paper).

Direction vectors

Before going on to the expressions for getting force constants of molecules in a non-equilibrium

position, one issue should be addressed. It involves the direction vectors (of unit length; in principle

we can take a vector of arbitrary length, since it is involved in both the numerator and denominator of

eq. (14), but for simplicity we take this direction vector as a unit vector) belonging to the internal

coordinates for which we want to obtain force constants and/or equilibrium values. As shown in the

harmonic potential part, the difference between the classical and quantum chemical infinitesimal

gradients in the direction of this vector is minimized (see eq. (8)); but no specific description has been

given yet what this vector looks like. The only thing stated so far, is that the direction vector dC  should

be representative for the internal coordinate we are interested in. In this part, we shall deal with this

issue.

As the interactions for a given internal coordinate are expressed in terms of a scalar value, the

issue does not arise when using the coordinate in a classical force field. Hence, no clearcut

formulations are readily available for it. We will have to make a choice for the direction vector based

on the positions of the atoms involved in the internal coordinate. The most simple approach is to take

the vector which will induce the largest increase in the value of the internal coordinate, which is given

by the gradient of the coordinate. For example, for a bond between two (homonuclear) atoms, the

direction vector is given in Figure 3.2.1 as r :

i j
rij

δr δr

FIGURE 3.2.1. SCHEMATIC REPRESENTATION OF BOND DIRECTION VECTOR

Only in the case of a homonuclear dimer is this the one and only choice. For instance, if we take a

heteronuclear dimer, we have to take the different atomic masses into consideration by using some

kind of weight factor. But in what way, is not yet clear. We could argue that since heavy atoms move

less than light atoms, the latter should have a higher weight; based on the expression for the kinetic

energy, it would lead to a weight that is equal to the inverse square root of the atomic mass. But by

looking at the force, we could argue that the weight should be equal to the inverse of the mass.

Moreover, when using the latter choice for the direction vector, neither the center of mass nor the

moments of inertia of the molecule change. Therefore, this choice is the preferred one, leading to the

direction vector of a given internal coordinate C  as:

dC,i = wi ∇C( ) i (15)

where the weight for atom i  is given as:

wi =
1
Mi

(16)
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In order to check that this is indeed the most appropriate choice for the direction vector, we have

tested a few other choices; we looked at the gradients, vibrational frequencies and fit residues (eq. (8))

for a number of molecules. For “normal” bonds, i.e. not involving metal atoms, the choice given in eq.

(15) gives indeed the best agreement between quantum chemical and classical properties (gradients,

vibrational frequencies, fit residues). However, as will be shown in the Results part, when looking at

bonds involving metal atoms, more appropriate direction vectors can be used where only the metal

atom is allowed to move.

Harmonic potentials for molecules in non-equilibrium geometries

In the harmonic potential part, we discussed how to obtain harmonic force constants for molecules in

their equilibrium positions. However, most of computational chemistry is being done on molecules

that are not exactly in the equilibrium geometry due to numerical accuracy. It would be most helpful

to be able to correct the force constants as well as the equilibrium values of the bond lengths/angles

for this non-equilibrium character. Within the harmonic approximation this is easily achieved by first

getting the force constant as if the molecule were in an equilibrium geometry. Since the second

derivative of the harmonic potential is constant and equal to the force constant (in 1D; in 3D, the trace

of the Hessian is constant), the value of it does not change if the molecule is put into a non-equilibrium

position. The only change occurs for the gradient, which measures how far the molecule is outside its

equilibrium position:

G Cnow( ) = KC Cnow − Ceq( ) (17)

Since the gradient is known from quantum chemistry, the real equilibrium value can be obtained from

this expression since all other quantities are known:

Ceq = Cnow −
G Cnow( )

KC

(18)

In three-dimensional notation, this would result in the following expression:

Ceq = Cnow −
G rnow( )T

∇C

KC ∇CT∇C( )1 2 (19)

Note that if the gradient is zero, the equilibrium value is simply the current one, like already

mentioned earlier.

For a proper dihedral, we do not use a harmonic potential but a cosine function. The equilibrium

value can then be obtained by following the same strategy, resulting in:

eq = now +
1
n

arcsin
−1

nK

G rnow( )T
∇

∇ T∇( )1 2

 

 
 
 

 

 
 
 (20)
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Anharmonic Frost potential

Until now, we have concerned ourselves with harmonic potentials, which are valid only if one is

reasonably close to the equilibrium geometry of the molecule (see Figure 3.2.2). However, sometimes

one might want to use an anharmonic potential that is able to give a proper description over a larger

bond value range, for instance in the case of the dissociation reaction between any atoms or molecules.

The most widely known anharmonic potential is due to Morse130. It uses the equilibrium distance Req ,

dissociation energy De  and anharmonicity constant :

UMorse = De 1− e
− R −R eq( )( )2

(21)

Disadvantageous for this equation is the fact that it is a three parameter equation, while in the strictest

sense, we only have two variables to optimize the parameters (first and second derivative: gradient and

Hessian).

FIGURE 3.2.2. SCHEMATIC COMPARISON OF ANHARMONIC FROST AND HARMONIC POTENTIAL

Varshni185 has examined several potentials with differing number of parameters, ranging from two to

five. One of them is the two parameter Frost potential131,132, which has been constructed on semi-

theoretical grounds. It is split up in a nuclear and an electronic part, just like normally done in

quantum chemistry:

U R( ) =
N1N2

R
+ Ue R( ) (22)

Ni  stands here for the nuclear charge of atom i , and Ue  for the electronic part of the potential. Frost

and Musulin then defined some theoretical criteria that should be satisfied by a given potential (they

used also two less clear ones, which we will not show here):

1- the potential energy is the sum of two parts (i.e. nuclear and electronic)
2- U  becomes infinite as R approaches zero
3- Ue  is finite at R = 0
4- Ue ∝ −N1N 2 R  for large R (due to choice of U = 0 at infinite R)

5- U  must be capable of going through a minimum as R varies
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A simple function for the electronic potential that satisfies these criteria, is given by:

Ue = −
N1N2

R
1− e−aR( ) − be−aR (23)

where a,b are adjustable parameters. They arrived at the particular form for this function by

considering possible products of an exponential with powers of R, which was the most probable form

because the overlap, Coulomb and exchange integrals of quantum-chemical theory are of this type

when using Slater type orbitals. The sum of the electronic and nuclear potential energy is then given

by:

U = e−aR N1N2

R
− b

 
 

 
 (24)

The function is plotted with parameters for the hydrogen molecule (from the original article131) in
Figure 3.2.2. Examining several properties of 23 diatomic molecules, Varshni concluded that the Frost
and Morse potential perform equally well185.

The question remains however, how to obtain values for the a,b parameters. For that, we need

not only the potential energy, but also the gradient and Hessian (in 1D):

U = e−aR N1N2

R
− b

 
 

 
 

G = e−aR ab −
aN1N2

R
−

N1N2

R2

 
 

 
 

H = e−aR 2N1N2

R3 +
2aN1N2

R2 +
a2N1N2

R
− a2b

 
  

 
  

(25)

For the equilibrium bond length the gradient is zero; therefore we have an expression for the b

parameter:

ab −
aN1N2

Req

−
N1N2

Req
2 = 0 → b =

N1N2

Req

+
N1N2

aReq
2 (26)

We can use this in the equation for the Hessian, which results in an expression for it that depends only

on a and R:

H = N1N2e
−aR 2

R3 +
2a
R2 +

a2

R
−

a2

Req

−
a

Req
2

 

  
 

  = ′ K (27)

However, we also have the value of the Hessian in this point (the force constant K  within the

harmonic approximation). Therefore, we can get the parameter a by minimizing the difference

between the actual 2nd derivative K  and the Frost 2nd derivative ′ K :

∆a = 1
2 K − ′ K ( )2

(28)
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Note, that in order to do this we have to choose a trial equilibrium bond length (which we will optimize

later). From eq. (28) we get the value for the parameter a, which we can use in eq. (26) for the

parameter b at a certain “equilibrium” bond length. With the a,b parameters, we obtain a value for the

gradient within the Frost approximation. If it is equal to the actual quantum chemical gradient, the

“trial” equilibrium bond length is correct, else we use the gradient difference to get a better guess of

the equilibrium bond length, and repeat this procedure until we have found the correct one (within the

Frost approximation).

With the optimized parameters a,b and the equilibrium bond length, the dissociation energy De

is simply obtained by filling in these values in eq. (24). We then get:

De = −e
−aR eq

N1N2

Req

− b
 

  
 

  (29)

Note that the minus sign has been added since the dissociation energy is normally defined as a positive

quantity, i.e. the energy needed to dissociate a molecule and not as a negative interaction energy as in

equation (24).

Normal mode analysis

An important check on the accuracy of the force field parameters from any method is the ability of

them to reproduce the vibrational frequencies (be it from experiments or quantum chemical

calculations). They can be obtained from the calculated Hessian in Cartesian coordinates, by

transforming it into the mass-weighted Hessian matrix H mw 186:

Hij
mw =

H ij

M iM j

(30)

After diagonalization of this matrix, the eigenvalues i can be transformed easily into the vibrational

frequencies i :

i =
1

2 i (31)

This procedure works for any Hessian matrix (both classical and quantum chemical), and therefore we

can use it to check the reliability of the classical force field.
One important issue involved in this procedure is the coordinates involved in the normal mode

analysis. For a molecule consisting of N  atoms, there are 3N − 6 normal modes and vibrational

frequencies ( 3N − 5 for a linear molecule). So far, we have not been concerned about the number of

classical internal coordinates, but it is obvious that they should be chosen such that the total number

is equal to the number of normal modes. However, this is a choice of the person who wants to use the

force constants for a classical simulation, and as such does not concern us here in the method

development. Normally, the choice for which internal coordinates to use is easily made, like in the

case of water. One would normally take two O-H bonds and one H-O-H angle, or alternatively three

bonds: two O-H and one H-H. Moreover, it is even possible to combine several internal coordinates

together in one combined internal coordinate as are standard in for instance AMBER95 with a few
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dihedral angles. Although the total number of actual internal coordinates used is larger than the

number of normal modes, this is not true when the combined internal coordinates are counted.

Computational details

The method described in this paper is generally applicable to any quantum chemical method able to

supply a gradient and Hessian for a certain molecule in a given geometry. In this paper we will report

results for some molecules where the quantum chemical data were obtained with Density Functional

Theory (DFT)1 calculations in the ADF program117,187. Although the results in this paper are used to

test the method, and not the accuracy of DFT, we would like to obtain calculated values that are at

least reasonable, to be able to compare the force field parameters obtained with standard force fields

like AMBER126/GROMOS127,176. We therefore performed the DFT calculations in a TZP basis set using

the LDA (Local Density Approximation)1 exchange-correlation potential. In another study, we have

investigated the accuracy of several exchange-correlation potentials in a number of basis sets for a set

of 19 small molecules. The same set had been used previously by another group188 to test the accuracy

of several post-Hartree Fock methods in combination with different (correlation consistent) basis sets.

This enabled us to compare our results not only to experimental data, but also to high-level ab initio

calculations. We found that (for the TZP basis set we used) the accuracy of the LDA exchange-

correlation potential is equal to the normally more accurate but also more CPU expensive Becke120-

Perdew (BP86121) or Perdew-Wang (PW91189) exchange-correlation potentials: the average absolute

deviations of the bond lengths from experimental data are respectively 1.14 (LDA), 1.24 (BP86) and

1.09 (PW91) pm. Furthermore, it is known that DFT generally gives accurate frequencies at low

computational cost1, which enables us to treat larger systems at a high computational level.

The geometries of the molecules were optimized until the gradient was smaller than 1.0.10-3, a

frequency run was performed (without symmetry to obtain the full Hessian matrix), and the force

constants obtained. Until now, the IntraFF analysis for obtaining the force field parameters was

performed in a standalone program after the ADF calculation. In the near future, it will be added to

the ADF program.

Results

Set of twelve molecules

The set of molecules consists of: ethylene, ethane, methane, carbon monoxide, hydrogen,

hydrogenchloride, hydrogenfluoride, hydrogenperoxide, nitrogen, ammonia, benzene, CFClBrH,

dioxygen and water. In all cases did the geometry optimization converge within five steps, which took

at most one hour of CPU-time on an IBM/RS6000 per molecule. The optimized values for the internal

coordinates of the molecules are given in Tables 3.2.1 and 3.2.2.

Probably the most commonly known experimental value for a bond angle known in

computational chemistry is the one for the water molecule (104.45°). Our computed result of 104.34°

is in very good agreement with this value, although it must be mentioned at the same time that the O-

H bond is overestimated by some 1.6 pm. The same trend of overestimating bond lengths is seen for

some other molecules, like hydrogen (2.o pm) and ammonia (1.6 pm). On the other hand, the

computed results for carbon monoxide, nitrogen and oxygen are in perfect agreement with

experiment, and also the agreement for the HNH angle in ammonia is good. Generally speaking we are

therefore reasonably close to the experimental geometries.
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TABLE 3.2.1. FORCE CONSTANTS FC (KCAL/MOL/Å2) FOR OPTIMIZED BONDS R (Å), WITH FROST

PARAMETERS a (BOHR-1), b (HARTREE) AND CORRESPONDING DISSOCIATION ENERGY De (EV)

Molecule Atoms R FC Amber126 a b De

C2H4 CC 1.324 1554 - 1.101 19.60 9.02
CH 1.095 760 734 1.016 4.28 4.59

C2H6 CC 1.510 755 620 1.110 16.60 4.56
CH 1.102 704 680 1.046 4.20 4.07

CH4 CH 1.098 728 680 1.035 4.24 4.28
CO CO 1.131 2731 - 1.405 29.93 10.08
H2 HH 0.766 740 - 0.788 1.30 5.26
HCl HCl 1.300 682 - 1.188 9.29 3.48
HF HF 0.937 1302 - 1.435 7.09 4.29
H2O2 OO 1.443 644 - 1.548 29.02 2.21

OH 0.981 1061 1106 1.334 6.06 4.01
N2 NN 1.098 3405 - 1.382 31.85 12.75
NH3 NH 1.024 948 868 1.178 5.20 4.42
O2 OO 1.218 1698 - 1.595 35.38 5.25
CFClBrH CF 1.339 781 734 1.604 26.60 2.47

CCl 1.755 457 - 1.354 37.61 2.09
CBr 1.943 379 - 1.414 68.20 1.66
CH 1.097 743 680 1.026 4.26 4.42

C6H6 CC 1.398 1073 938 1.133 18.34 6.43
CH 1.090 785 734 1.029 4.20 4.20

H2O OH 0.974 1118 1106 1.321 6.13 4.27

In order to get vibrational frequencies for the 12 molecules, we calculated the Hessian for each

molecule through numerical differentiation of the analytical gradients, followed by a normal mode

analysis. This procedure of numerical differentiation has the advantage that one can also obtain the

derivative of the dipole moment with respect to the coordinates, and as such the IR intensities of the

frequencies. The vibrational frequencies obtained from this procedure are given in Table 3.2.2. For the

diatomic molecules, the values are 1582 cm-1 (O2), 2167 cm-1 (CO), 2395 cm-1 (N2), 2866 cm-1 (HCl),

4005 cm-1 (HF), 4161 cm-1 (H2), with intensities 0.0 (O2), 72.3 (CO), 0.0 (N2), 70.3 (HCl), 145.3 (HF),

0.0 (H2) km/mol, respectively. The frequencies are in good agreement with the experimental values190

of 1580, 2133, 2359, 2989, 4138, 4359 cm-1. For water, the DFT frequencies are 1555 [86.3], 3696

[10.6] and 3798 cm-1 [80.7 km/mol], with the intensities given between square brackets. The

frequencies correspond more or less to one bending and two bond stretching modes. This is just a

rough splitting of the internal coordinate systems, because in reality the normal modes do not

correspond exactly to the internal coordinates, but are a mixture of them. For ammonia, we find three

high frequency values (3381 [1.1], twice 3513 cm-1 [10.6]), and three lower values: 968 [160.5], twice

1585 cm-1 [0.6 km/mol]. A rough division would again lead to the high frequency modes

corresponding to bond stretches, and the low values to bending modes.
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TABLE 3.2.2. FORCE CONSTANTS FC (KCAL/MOL/RAD2) FOR OPTIMIZED ANGLES AND DIHEDRAL

ANGLES A (°)a

Angle A FC Angle A FC

C2H4 CFClBrH
θ CCH 121.52 176.0 θFCCl 109.70 384.2
φHCCH 0/180 7.1 θFCBr 109.01 384.6

C2H6 θFCH 110.27 125.3
θ CCH 111.60 155.8 θClCBr 111.83 555.3
φHCCH 60 (± 120) 8.1 θClCH 109.05 112.9

CH4 θBrCH 106.94 108.8
θ HCH 109.47 93.8 C6H6

H2O2 θ CCC 120.00 735.6
θ OOH 100.36 121.1 θ CCH 120.00 178.7
φHOOH 106.76 6.8 H2O

NH3 θ HOH 104.34 89.2
θ HNH 106.65 89.3

Methane has the following frequencies: three times 1249 cm-1 [19.9], twice 1480 cm-1 [0.0], 2951

cm-1 [0.0] and twice 3080 cm-1 [7.0 km/mol]. For hydrogenperoxide, the values are 431 [150.2], 956

[0.6], 1285 [108.0], 1362 [0.9], 3618 [62.5] and 3630 cm-1 [24.1 km/mol]. The latter two would

correspond to the OH stretches, and the first one to the HOOH torsion. The other three are some

mixture of the OO stretch and the HOO bends. The bond stretches are in this case all lower than the

corresponding values found in water. For ethylene, the frequencies are 798 [0.4], 924 [93.1], 937 [0.0],

1029 [0.0], 1184 [0.0], 1319 [0.0], 1390 [14.7], 1652 [0.0], 3038 [5.6], 3050 [0.0], 3117 [0.0] and 3141

cm-1 [5.4 km/mol]. Finally, for ethane we find 304 [0.0], twice 787 [6.6], 1019 [0.0], twice 1159 [0.0],

1332 [4.7], 1349 [0.0], twice 1425 [0.0], twice 1425 [14.3], 2949 [0.0], 2949 [42.0], twice 3010 [0.0]

and twice 3033 cm-1 [29.2 km/mol].

The computed Hessian matrices for the molecules were used afterwards to get force constants for

all possible internal coordinates of the molecules, which are given in Tables 3.2.1 and 3.2.2. Compared

to the force constants of AMBER126 ( kOH  1106 kcal/mol/Å2) or GROMOS127 ( kOH
quartic  2.32.107

kJ/mol/nm4) , our value for water of 1118 kcal/mol/Å2 (or 2.46 kJ/mol/nm4) is rather similar. Our

bending constant of 89 kcal/mol/rad2 is close to the GROMOS value (corresponding to 92

kcal/mol/rad2), but rather far off from the AMBER value (200 kcal/mol/rad2), which is a surprising

deviation on their part. In Table 3.2.3, we report the vibrational frequencies for the molecules from the

force constants obtained here, that have on average a deviation of 13 cm-1 from the DFT values. Here

we can also see that our force constants performs well for water, which casts some more doubt on the

high bending constant for water in the AMBER force field.

                                                                
aThe values of the force constants depend on how many dihedrals are taken into account in the force field; for
ethane, it makes a factor 9 difference if all nine possible dihedrals are taken into account or only one; for the
values reported here it is assumed that the dihedrals are all taken into account separately
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TABLE 3.2.3. FREQUENCIES (CM-1) FROM QUANTUMCHEMICAL AND CLASSICAL HESSIANS

QC FF QC FF QC FF QC FF QC FF

ethylene ethane hydrogenchloride nitrogen benzene

798 668 304 931 2866 2866 2395 2395 4092 4622

924 854 7872 8872 6032 8852

937 988 1019 1229 hydrogenfluoride oxygen 624 744

1029 1049 11592 10542 4005 4005 1582 1582 716 781

1184 1186 1332 1246 8052 9092

1319 1238 1349 1450 hydrogenperoxide water 9312 9892

1390 1327 14242 14202 431 430 1555 1537 960 896

1652 1789 14252 14382 956 920 3696 3703 984 972

3038 3052 2948 2921 1285 1281 3798 3757 996 1182

3050 3085 2950 2931 1362 1343 10162 10542

3117 3160 30102 30262 3618 3634 CFClBrH 1107 1492

3141 3166 30332 30342 3630 3634 215 283 11322 12542

305 386 1297 1696

methane carbonmonoxide ammonia 419 451 1324 1730

12493 13473 2167 2167 968 1185 641 778 14412 16442

14802 15082 15852 15932 761 946 15742 19092

2951 2919 hydrogen 3381 3382 1103 1088 3119 3166

30803 30853 4161 4161 35132 34832 1154 1328 31252 31692

1256 1439 31372 31912

3054 3078 3148 3210

2) Twice found ;

3) Three times found

For the bonds we report in Table 3.2.1 also the parameters a and b for the Frost potential as well

as the dissociation energy resulting from these parameters. These energies are in reasonable

agreement with experimental values190 (typical deviation 0.2-0.3 eV, smallest deviation 0.01 eV,

largest 1.6 eV).

Conclusions

We have constructed a new method to obtain force field parameters from quantum chemical

calculations for bonding interactions that can be used in molecular simulations by classical mechanics.

It is invariant to the choice of internal coordinates, and can be used with any type of quantum

chemical method. We have tested several options for direction vectors that are used to describe the

internal coordinates, and found the one where the direction vector of maximum increase (or the

gradient of the internal coordinate with respect to atomic coordinates) weighted inversely by the

atomic masses to give the best performance. The heavy atoms are therefore less important for the force

constant, which seems natural since they tend to move less also. The reference data come from Density

Functional Theory (DFT) calculations using the LDA exchange-correlation potential in a triple zeta
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valence basis set plus polarization functions (TZP), which is at a level sufficiently high to give results

that are reasonably close to experimental data. From the computed DFT Hessians we have obtained

the vibrational frequencies (and IR intensities) for a dozen molecules, and compared the frequencies

from the force field with them. On average the difference between the two sets is 13 cm-1.
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Appendix 3.2. Classical force field expressions

Harmonic potentials

The energy for any internal coordinate C  using a harmonic potential is given by the following energy

expression:

U Cnow( ) = 1
2 KC Cnow − Ceq( )2

(32)

The derivatives of this energy with respect to the atomic coordinates rp,i are then obtained by applying

the chain rule. First, the derivative with respect to the internal coordinate is taken, then the derivative

of this internal coordinate with respect to atompair distances ( Rij = rij = ri − r j ) and finally the

derivative of the atompair distance with respect to the atomic coordinates:

∇ i,pU Cnow( ) = G i,p =
∂U Cnow( )

∂C

∂C

∂Rij

∂Rij

∂ri,p
= KC Cnow − Ceq( ) ∂C

∂R ij

∂Rij

∂ri,p
(33)

The second derivatives (Hessians) are obtained by the product rule, resulting in two contributions:

H i,p; j ,q =
∂G i,p

∂r j ,q
= KC

∂C

∂R ij

 

 
 

 

 
 

2 ∂R ij

∂ri,p

∂R ij

∂r j ,q
+ KC Cnow − Ceq( ) ∂2C

∂Rij
2

∂Rij

∂ri,p

∂Rij

∂rj ,q
(34)

The derivatives of a bond R with respect to the atomic coordinates are given by:

∂R ij

∂ri,p
=

rij,p

R ij

∂rij
∂ri

∂2R ij

∂ri,p∂r j ,q
= −1( )1+ ij pq

Rij
−

rij,prij,q

Rij
3

 

 
 
 

 

 
 
 

(35)

For the dihedral angle , we use the formulations of Blondel and Karplus191, who have shown that for

any normal dihedral angle value (i.e. all cases except the one where three or more atoms lie on a

straight line), the derivatives for the potential of ijkl  can be obtained by using the following vectors:

VF = ri − r j

VG = rj − rk

VH = rl − rk

VA = VF × VG

VB = VH × VG
(36)
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The derivatives for the four atoms are then given by:

∂
∂ri

= −
VG

VA
TVA( ) VA

∂
∂r j

= +
VG

VA
TVA( ) VA +

VF
TVG( )

VA
TVA( )VG

VA −
VH

TVG( )
VB

TVB( ) VG

VB

∂
∂rk

= −
VG

VB
TVB( ) VB −

VF
TVG( )

VA
TVA( ) VG

VA +
VH

TVG( )
VB

TVB( ) VG
VB

∂
∂rl

= +
VG

VB
TVB( ) VB

(37)

From these equations, one can easily see why this procedure breaks down if three atoms lie on a

straight line, since the inner product of either the VA - or VB-vector will be zero. However, in general

such a situation is not likely to occur, since there are bending interactions preventing it from

happening. The second derivatives of the dihedral angle with respect to the atomic coordinates are

given by first taking the derivatives with respect to the VF ,VG ,VH -vectors:

∂2

∂VF
2 =

VG

VA
TVA( )2 VA ⊗ VG × VA + VG × VA ⊗ VA( )

∂2

∂VH
2

=
−VG

VB
TVB( )2

VB ⊗ VG × VB + VG × VB ⊗ VB( )

∂2

∂VF∂VG
=

1

VG VA
TVA( )2 VG

TVG( ) VA × VF( ) ⊗ VA + VF
TVG( )VA ⊗ VA × VG( )( )

∂2

∂VG ∂VH
=

−1

VG VB
TVB( )2 VG

TVG( ) VB × VH( ) ⊗ VB + VH
TVG( )VB ⊗ VB × VG( )( )

∂2

∂VF∂VH
= 0

(38)

∂2

∂VG
2 =

1

2VG
3

VA
TVA( )

VG × VA ⊗ VA + VA ⊗ VG × VA( )

+
VF

TVG( )
VG VA

TVA( )2 VA ⊗ VF × VA + VF × VA ⊗ VA( )

−
1

2 VG
3

VB
TVB( ) VG × VB ⊗ VB + VB ⊗ VG × VB( )

−
VH

TVG( )
VG VB

TVB( )2
VB ⊗ VH × VB + VH × VB ⊗ VB( )

(39)

where ⊗  stands for the tensorproduct:

A ⊗ B( ) ij = AiB j (40)
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Now, with the derivatives of the VF ,VG ,VH -vectors with respect to the atomic coordinates:

∂VF

∂ri
= 1 ; 

∂VF

∂r j
= −1 ; 

∂VG

∂rj
= 1 ; 

∂VG

∂rk
= −1 ; 

∂VH

∂rl
= 1 ; 

∂VH

∂rk
= −1 (41)

we finally obtain the second derivatives of the dihedral angle as:

∂2

∂ri
2 =

∂2

∂Vp∂Vq

∂Vp

∂ri

∂Vq

∂rip,q
∑   ;   p, q ∈ F,G , H{ } (42)

By following the same procedure for the angle, and by using the following vectors:

VA = ri − r j

VB = rk − r j
VG = VA × VB (43)

we obtain the derivative of the angle  with respect to the atomic coordinates as follows:

∂
∂VA

= −1

VA
TVA( )VG

VG × VA( )

∂
∂VB

= −1

VB
TVB( )VG

VB × VG( )

∂
∂ri

=
∂

∂VA

∂
∂r j

= −
∂

∂VA
+

∂
∂VB

 
  

 
  

∂
∂rk

=
∂

∂VB

(44)

The second derivative has not been worked out yet, when needed it is obtained by numerical

differentiation of eq. (44).

Anharmonic Frost potential131,132

The energy expression for this anharmonic bond potential is for a bond Rij  between atoms i  and j  as:

U Rij( ) = e
−aRij

N iN j

Rij
− b

 

 
 

 

 
 (45)

The derivatives with respect to the distance Rij  are given by:

G Rij( ) = e
− aRij ab −

aN iN j

Rij
−

N iN j

R ij
2

 

 
  

 

 
  

H Rij( ) = e− aRij
2N iN j

Rij
3

+
2aNiN j

Rij
2

+
a2NiN j

Rij
− a2b

 

 
  

 

 
  

(46)
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Quartic GROMOS potential127

In order to avoid the square root operation, GROMOS96 uses quartic potentials for bonds. The

expressions for a bond R are:

U R( ) = 1
4 K quartic R2 − Req

2( )2

G R( ) = K quarticR R2 − Req
2( )

H R( ) = K quartic 3R2 − Req
2( )

(47)

Dihedral potentials

For the dihedral angle, one normally takes either a harmonic potential, or a periodic one (with

periodicity n):

U now( ) = K 1 + cos n now − shift( )( ) = K 1+ cos n now − eq( ) −( )( )
shift = n eq +

(48)

The derivatives with respect to the dihedral angle are then:

G now( ) = −nK sin n now − shift( )
H now( ) = −n2K cos n now − shift( )

(49)


