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Abstract

Several recent studies (J. Phys. Chem. A 2004, 108, 5479; J. Comput. Chem. 2007, 28, 2431)
have shown impressive results when replacing the non-empirical PBE density functional by
the empirical OPBE or OLYP functionals, i.e. replacing the PBE exchange functional by
Handy and Cohen’s OPTX functional. To investigate the origin of the improvements, we have
placed constraints from the non-empirical PBE exchange functional on the empirical OPTX
exchange functional, and tested the performance of the resulting constrained functionals for
several characteristic chemical properties. The performance of the new functionals is tested
for a number of standard benchmark tests, such as the atomization energies of the G2 set,
accuracy of geometries for small molecules, atomic exchange energies, and proton affinities
of anionic and neutral molecules. Furthermore, the new functionals are tested against a
benchmark set of nucleophilic substitution SN2 reactions, for which we have recently
compared DFT with high-level coupled cluster CCSD(T) data (J. Comput. Chem. 2007, 28,
1551). Our study makes clear that the performance depends critically on the number of
constraints, and on the reference data to which the constrained functionals are optimized. For
each of these properties studied, there is at least one functional that performs very well.
Although a new promising functional (MLffOLYP) emerged from the set of constrained
functionals that approaches coupled-cluster accuracy for geometries and performs very well
for the energy profile of SN2 reactions, there is no one of the newly constructed functionals
that performs equally well for all properties.

Keywords: Density Functional Theory – Exchange functional – Geometry – Reactivity –
Properties.
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Introduction

Over the past twenty years, Density Functional Theory (DFT)[1-3] has become the
method of choice for many investigations of chemical problems by quantum-chemistry
methods. Within DFT, only the exchange-correlation energy EXC = EX + EC as a functional of
the electron density ρ(r) must be approximated, i.e. as EXC[ρ(r)]. In fact, Hohenberg and
Kohn[4] proved that if a suitable functional is chosen, this would give exact results.
Unfortunately, they did not give the formulation for this suitable (i.e. exact) functional, for
which various approximations have been proposed since then (see the “Formulation of DFT
functionals” section). The first and most simple approximation (Local Density
Approximation, LDA)[5-7] was derived from the uniform electron gas, and is determined
completely by the density ρ(r). Although this approximation works very well for physics, its
performance for chemistry was less satisfactory. Therefore, also the density gradient (∇ρ)
was taken into account (Generalized Gradient Approximation, GGA),[8] which indeed
showed marked improvements over LDA. Later studies included not only the density
gradient, but also its Laplacian (∇2ρ) and/or the kinetic energy density (Meta-GGA,
MGGA).[9] These three classes (LDA, GGA, MGGA) comprise the first three rungs on
Jacob’s ladder of increasing accuracy (and complexity).[10] The early GGA functionals were
still not as accurate as hoped for, which also led to the inclusion of a portion of Hartree-Fock
exchange in the exchange part of the functional (hybrid functionals).[11] In the fourth rung of
the ladder (Hyper-GGAs, HGGA), not simply a portion but the full 100% of HF exchange
will be taken into account.[12]

Figure 1. Computational demand (CPU-time, s) of LDA, GGA, MGGA, hybrid and hybrid-MGGA
functionals for one SCF cycle for the HOF molecule with the cc-pVQZ basis.

The increase of accuracy (and complexity) comes with a price, as the computational cost
increases significantly along the rungs of the ladder (see figure 1). However, because the
energy depends in principle only on the density ρ(r) (and its derivatives), which in turn is a
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function of only 3 coordinates (x, y, z), DFT is still a much more efficient method than
wavefunction (Ψ) based methods that explicitly depend on 3Nelec, that is, the 3 coordinates of
each of the Nelec electrons in the system. Moreover, because of additional enhancements to
make the programs more efficient (linear scaling techniques),[13,14] the computational cost
of DFT nowadays scales linearly with system size (N), in contrast to for instance the “gold
standard” CCSD(T) that scales as N7.[15] Therefore, nowadays it is already possible to treat a
complete protein structure of 4728 atoms completely with DFT methods,[16] while probably
the largest system studied with CCSD(T) is octane (26 atoms), which was possible only in
parallel on ca. 1500 nodes.[17] However, despite the huge computational cost, the CCSD(T)
method is highly popular because it is generally applicable and a very accurate method, often
even more accurate than experiment.[18-20] As a result, the method is often used in
benchmark studies[21-24] to give the reference data with which to compare results from e.g.
DFT functionals.

One of the more promising and consistent lines of research within the formulation of
DFT functionals is provided by Perdew and co-workers,[6,7,9,12,25-31] who e.g. introduced
the first GGA functional. Over the past decades, they have constructed non-empirical
functionals on the first three rungs: PW92 (LDA),[7] PBE (GGA),[28,32] TPSS
(MGGA),[30] and semi-non-empirical hybrid functionals PBE0[33] (also known as
PBE1PBE) and TPSSh[31] that contain 25% and 10% of HF exchange respectively. These
functionals were constructed based (amongst others) on constraints that should be satisfied by
the exchange-correlation hole,[28] which is one of the reasons why these functionals in
general perform very well. However, for each of these functionals there are properties for
which it does not perform very well. For instance, the PBE functional is not very accurate for
the atomization energies of a set of molecules (the G2 set, see below), for which it shows a
deviation of 16 kcal·mol-1. Although this is only a fraction of the deviation for LDA (83
kcal·mol-1),[23] it is ca. four times that of other functionals such as the highly empirical
B3LYP (a hybrid functional).[34] Very soon after its publication, the PBE functional was
therefore revised[35] with the atomization energies in mind. In this revPBE functional, one of
the PBE constraints (see below) was lifted, which indeed improved results for the G2-set
atomization energies. However, for the accuracy of geometries of a set of small
molecules,[36] PBE performed significantly better, while for other properties the difference
between revPBE and PBE is either insignificant or in favor of PBE. Several other
modifications of the PBE functional have been proposed (RPBE,[37] mPBE,[38] xPBE[39]),
which however do not show a general improvement and suffer from being highly empirical.

It seemed therefore that improvement over PBE could only be obtained by going to
higher rungs on the ladder. This changed however in 2001, when Handy and Cohen[40]
introduced the optimized exchange (OPTX) functional, which was fitted to minimize the
difference with Hartree-Fock exchange energies for atoms (H-Ar). This difference (3.6
kcal·mol-1) was indeed substantially lower than that of other popular exchange functionals
like Becke88[41] (7.4 kcal·mol-1) or PBEx[32] exchange (40.5 kcal·mol-1; see below). When
combined with the Lee-Yang-Parr (LYP)[42] correlation functional, the resulting OLYP
functional was indeed shown to be a major improvement over other GGA functionals,[43]
and for organic chemistry reactions it performed better than the B3LYP functional.[44]
Similar good results were obtained by combining OPTX with the PBEc correlation functional
(to give OPBE).[21,23,45]
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The OPBE functional was tested successfully for the spin ground-state of a series of iron
complexes,[45] for which early GGA functionals failed completely. The latter functionals
(including PBE) showed a tendency to overstabilize low-spin states, and as a result predicted
a low-spin (doublet) ground-state for an iron(III) compound (Fe(N(CH2-o-C6H4S)3)(1-Me-
imidazole)) that was experimentally shown to be high-spin (sextet). For the vertical spin-state
splittings (see figure 2 for its definition), a number of DFT functionals correctly predicted the
spin ground-state, which include OPBE,[23] Becke00,[46] B3LYP,[34] TPSSh[30,47] and
VS98.[48] However, a more stringent check[49,50] on the performance, by looking at the
relaxed spin-state splittings (see figure 2 for its definition) for these iron complexes, revealed
that only one reliable functional remained: OPBE.

Figure 2. Vertical (left) versus relaxed (right) spin-state splittings.

In a recent study[50] by one of us, the OPBE functional has been used for a series of iron
complexes, including a benchmark set (Fe(II)(H2O)6

2+, Fe(II)(NH3)6
2+, Fe(II)(bpy)3

2+) for
which high-level ab initio (CASPT2) data by Pierloot and co-workers[51] are available for
comparison. Pierloot and co-workers also used their data to compare with Hartree-Fock (HF)
and some DFT functionals, such as LDA, BP86[25,41] (GGA), PBE0[33] (hybrid) and
B3LYP[34] (hybrid). These functionals all showed large deviations from the reference
data,[51] of respectively 57 (LDA), 15 (BP86), 11 (B3LYP) and 9 (PBE0) kcal·mol-1.[50]
Moreover, the hybrid functionals B3LYP and PBE0 inadvertently predicted a high-spin
(quintet) ground-state for the bipyridyl compound, which should have been low-spin (singlet).
This failure of hybrid functionals can be traced directly[52] to the inclusion of a portion of HF
exchange; Hartree-Fock itself predicts a high-spin ground-state for all three molecules, with a
large deviation (57 kcal·mol-1) from the reference CASPT2 data.

The OPBE functional gives excellent agreement[50] with the CASPT2 data for the
benchmark set, from which it differs by only 1-2 kcal·mol-1. Note that this is an order of
magnitude smaller than those of the other DFT functionals, and falls well within the estimated
accuracy (1000 cm-1 ≈ 3 kcal·mol-1) of the CASPT2 data.[51] In the same paper,[50] a
number of other difficult iron compounds have been studied that include a spin-crossover
compound for which B3LYP and B3LYP* (a reparameterized form[53] of B3LYP that
contains only 15% HF exchange instead of the 20% in B3LYP) were shown to fail.[54] For
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all these compounds does OPBE give excellent behavior, i.e. it predicts the spin ground-state
that is experimentally observed and gives metal-ligand distances that are in good agreement
with experimental structures. Of particular interest[50] are two iron compounds based on
pyridylmethylamine (pma) ligands, for which the mono-pma compound has a high-spin
ground-state, while the di-pma compound has a low-spin ground-state. These two compounds
are structurally very similar with a distorted octahedral arrangement of ligands around the
iron, in which the only difference is the replacement of a chloride ligand (in mono-pma) by a
pyridine ligand (in di-pma). Despite these small changes, the OPBE functional is able to
correctly predict the spin ground-state, in contrast to other DFT functionals. The standard
pure functionals, which overstabilize low-spin states, fail for the mono-pma compound for
which they do not predict the high spin-state. Hybrid functionals, which overstabilize high
spin-states due to inclusion of HF exchange, fail for the di-pma compound for which they do
not predict the low spin-state. Especially noteworthy was the failure of the Minnesota M06
functionals, which were reported[55] to be the most reliable for organometallic compounds,
but nevertheless failed dramatically for the spin ground-states of iron complexes.

The reliability of the OPBE functional for providing spin ground-states has been shown
also by studies from other groups,[52,56-68] which also looked at other metals than iron.
Furthermore, some of us have investigated[69] its performance for the spin ground-states of a
number of ligands, for which experimental data are available with several first-row transition-
metals in a number of oxidation states (Mn(II), Mn(III), Mn(IV), Cr(II), Co(II), Co(III),
Ni(II), Ni(III), Fe(II), Fe(III)). In all these cases did OPBE correctly predict the spin ground-
state.

Recently, we have investigated the influence of the basis set on the spin-state
splittings,[70] which was found to be substantial. It was shown that both vertical and relaxed
spin-state splittings converge rapidly with basis set size when using Slater-Type Orbitals
(STOs), while the convergence is much slower for Gaussian-Type Orbitals (GTOs). The
smaller GTO basis sets have in particular problems with high-spin states that are typically
placed at too low energy, especially when looking at relaxed spin-state splittings. However,
when using very large and demanding GTO basis sets (like NR-cc-pVTZ), the GTO series
converges to the same results as obtained with the STO series. This does not occur when
using basis sets that include Effective Core Potentials (ECPBs) that give results that are
fundamentally different from the STO/GTO data.[70]

The good performance of the OPBE functional for the spin-states of iron complexes
concurs with a recent benchmark study on the energy landscapes of bimolecular nucleophilic
substitution (SN2) reactions by us.[21] In that study, we investigated the performance of DFT
functionals for the energy profile of SN2 reactions for which reference CCSD(T) data were
available in the literature. It was shown that functionals based on OPTX exchange (OPBE,
OLYP) significantly improve upon early GGA functionals such as BLYP or PBE, i.e. the
underestimation of reaction barriers by the latter is dramatically reduced (roughly by a factor
of two). Moreover, we also investigated the geometries of the different stationary points
(reactants, products, reactant complexes, product complexes, transition states), and compared
the resulting structures with the CCSD(T) data. Significant improvements over standard GGA
results were obtained by using the OLYP and OPBE functionals, i.e. distances from
OLYP/OPBE were twice as accurate while angles were five to ten times as accurate. The
overall performance for the geometry, as measured by the PG value, is therefore ten to twenty
times smaller for the more accurate OPBE (PG value 0.04) and OLYP (PG value 0.03)
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functionals than for standard DFT functionals like BP86 (PG value 0.34), LDA (PG value
0.34), PBE (PG value 0.61) or BLYP (PG value 0.72). In fact, both OLYP and OPBE
performed substantially better for the geometries than either OLAP3[71,72] (MGGA, PG

value 0.07) or mPBE0KCIS (hybrid, PG value 0.06), which were respectively the best
performing MGGA and hybrid functional for the energetics of the SN2 reactions.[21]

In another validation study by some of us,[24] the competing elimination and substitution
pathways (anti-E2, syn-E2, SN2) were determined for X– + CH3CH2X (X= F, Cl) at the
CCSD(T)/aug-cc-pVxZ//OLYP/TZ2P level (x=Q for F, T+d for Cl). The same geometries
were used to determine the corresponding energies for a range of ab initio methods and DFT
functionals. The reference CCSD(T) data showed the anti-E2 pathway to be most favorable
for the fluoride reaction, while for chloride the substitution pathway is most favorable. Most
DFT functionals correctly predicted the chloride pathway (apart from M06-2X), but very few
GGA and MGGA functionals could correctly predict the anti-E2 pathway being most
favorable for the fluoride reaction. The exceptions were mainly those (M)GGA functionals
based on OPTX exchange (OPBE, OLYP, OLAP3). [24] The best performing GGA
functional for both the overall and central barrier was again OPBE, however with a
substantial mean absolute deviation (MAD) from the CCSD(T) data of 4.4 and 4.3 kcal·mol-1,
respectively. Similar to what was observed in the benchmark study on the energy landscapes
of SN2 reactions, these deviations show a dramatic reduction compared to early GGAs such as
PBE, which showed MAD values of 11.8 and 7.5 kcal·mol-1, respectively for the overall and
central barrier. As the elimination transition structures involve weak interactions of the
nucleophile/leaving group with the substrate (for which OPBE does not work that well, see
below), part of the elevated MAD value of OPBE and OLYP might be attributed to the less
satisfactory description of these by OPBE and OLYP. It should also be noted that the best
performing DFT functional for the SN2 energetics (mPBE0KCIS), now performs significantly
less with MAD values close to those of OPBE.

For NMR chemical shifts, OPBE also seems to give good results,[58,59] and was in fact
claimed to be the best DFT functional around,[59] often even surpassing the MP2 method,
although this has recently been questioned by Truhlar and co-workers.[73] Truhlar claimed
that the study by Xu and co-workers[59] was biased by leaving out ozone and PN (for which
OPBE supposedly does not perform as well as for 13C or 1H NMR), but this does not explain
why OPBE gives a much larger deviation for 13C chemical shifts (5.8 ppm) in Truhlar’s study
than in the Wu study (2.3 ppm). Fact is that a different GTO basis set was used in these two
studies, which might explain the observed differences. After all, NMR is a nuclear property
for which a good description of the region around the nucleus is mandatory, and since GTOs
do not have a cusp at the nucleus, they might not be particularly well suited for studying
NMR parameters unless very large and demanding basis sets are used (see above for the
enormous influence of the basis set type and size on spin-state splittings).

Despite these successes of OPBE for spin-state splittings,[45] SN2 energy landscapes,[21]
accuracy of geometries,[23] vibrational frequencies,[23] NMR chemical shifts,[59] there are
also examples where it fails dramatically. The most important failings are observed for weak
interactions, i.e. π-π stacking[74] and hydrogen-bonding interactions,[75] while it also does
not work as well as anticipated for the proton affinities of anionic[76] and neutral[77] bases
(see below). These weak interactions are especially important for biochemical systems, in
particular for DNA and RNA where inter-strand hydrogen-bonding interactions and intra-
strand π-π stacking interactions provide strong binding.[74]
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The π-π stacking interaction remains a problematic and difficult interaction for DFT to
handle,[74] which is often ascribed to the problems of DFT to describe dispersion
interactions. Although it is true that empirical C/R6 corrections[78] sometimes reduce the
failings of DFT functionals, there is no causal relation between dispersion and stacking. The
best example are posed by the XLYP and X3LYP functionals,[79] which were shown to
perform very well for the dispersion interactions of noble-gas dimers (He2, Ne2). Therefore,
these “best functionals available at that time” were predicted to perform equally well for π-π
stacking interactions of DNA bases;[79] however, they failed badly[80] (also for spin-state
splittings[49,50] and SN2 reaction barriers[21]). Recently, some of us investigated how good
or bad the DFT functionals are for π-π stacking interactions,[74] and found that there are
indeed some functionals (LDA, KT1,[81] KT2,[81] BHandH[82]) that give a very good
description for it. For π-π stacking OPBE and OLYP are not particularly good.[74] They even
show repulsive interactions, unlike e.g. PBE that still shows attraction (although too weak).

Hydrogen-bonding interactions are in general well described by many DFT functionals,
as was recently shown by some of us[75] for the H-bonding interactions in the DNA base
pairs A:T and G:C. Among the functionals that perform well are PW91 and BP86, while
OPBE and B3LYP underestimate H-bonding interactions. For instance for OPBE, the
hydrogen-bond distances were overestimated by 0.05-0.14 Å and the corresponding energy
underestimated by 9-12 kcal·mol-1. We therefore concluded[74,75,83] that at present there is
no DFT functional available that is simultaneously accurate for both weak (intermolecular)
and strong (intramolecular) interactions, reaction barriers and spin-state splittings (to name
just a few in a wide range of characteristic properties). In order to be able to study e.g. the
structure and reactivity of DNA, we designed a multi-level QM/QM approach (QUILD:
QUantum-regions Interconnected by Local Descriptions)[83] in which each type of
interaction can be studied by that particular methodology that is appropriate for it.

Because of the emerging pattern where PBE works well for some properties, but not for
others, and the impressive improvements shown by OPBE, we were interested in finding out
what is the origin of the differences observed between PBE and OPBE. In other words, why
does OPBE work so much better for reaction barriers and spin-state splittings, and not at all
for weak interactions ? Since both functionals contain the same PBEc correlation functional,
and differ only in the exchange part, it is obvious that it is determined by exchange. However,
exactly which part of it ? In the design of the PBEx exchange functional,[32] Perdew and co-
workers used four constraints (see below) that completely determines its formulation. The
OPTX functional[40] satisfies only one of these constraints, so it is very likely that releasing
the other three leads to the major improvements seen by OPBE. However, are all three
important or just one or perhaps none at all ? Here, we investigate this puzzling question in
two ways: (i) either by imposing the constraints on the OPTX formula; or (ii) by releasing
them for the PBEx formula.

Formulation of DFT Functionals

Density functional theory methods[1-3] such as the local density approximation (LDA)
and the generalized gradient approximation (GGA) describe the exchange-correlation energy
in terms of the density ρ and density gradient ∇ρ:
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EXC
LDA ρα ,ρβ[ ]= d3r  εXC

unif ρα ,ρβ( )∫
EXC

GGA ρα ,ρβ[ ]= d3r  ∫ f ρα ,ρβ ,∇ρα ,∇ρβ( )
(1)

The expression for the exchange energy of LDA is derived from the uniform electron gas
and is formulated as CX·ρ4/3, with CX a constant and ρ the (spin-polarized) density. Because
there is no exchange taking place between electrons of opposite spin, for spin-polarized
systems the exchange energy is simply the sum of the separate energies in terms of α and β
density; see the spin-scaling relationship below (constraint iv).[32] The expression for the
LDA correlation energy is a bit more involved,[5,7] and since we are focusing here on the
exchange energy only, it will not be given explicitly. The formula of the GGA exchange
energy can be expressed as function of the LDA exchange energy, by using an enhancement
factor F(s) that is expressed in terms of the reduced density gradient s = |∇ρ| / 2ρkF,
kF

3=[3π2·ρ]:[8]

EX
GGA = d3r  εX

unif ρ( )⋅ F s( )∫ (2)

In 1996, Perdew, Burke and Ernzerhof (PBE)[32] introduced a simplification of the
earlier Perdew-Wang (PW91) functional,[26] both of which contain only physical constants
as parameters. Moreover, they posed[32] a set of four constraints on the exchange part of the
(PBEx) functional that completely determines its expression:

i) to recover the correct uniform gas limit, the exchange functional should have an
enhancement factor F(s) that equals 1 (i.e. LDA) when the reduced density gradient s is zero

ii) at low values of s, i.e. for small density variations around the uniform density, the
functional should have a limiting behavior that goes as ~1+μs2 to cancel the correlation-GGA
contribution and thus recover the LDA linear response

iii) the Lieb-Oxford bound,[10] which should be met, will be satisfied if the enhancement
factor grows gradually with s to a maximum value of 1.804

iv) the exact exchange energy obeys the spin-scaling relationship:

EX ρα ,ρβ[ ]= EX 2ρα[ ]+ EX 2ρβ[ ]( )/2 (3)

A simple expression that satisfies these four constraints is given by their chosen form for
the enhancement factor[32]

F PBE s( )= A + Cs2 1
1+ C

B s2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = A + B 1

1+ B
C s−2 (4)

with A=1.0, B=0.804 and C≈0.219515. Note that the limiting behavior for both s→0 (in
square brackets) and s→∞ are given in Eq. 4.

The OPTX functional by Handy and Cohen[40] satisfies only constraint iv, and has the
following expression for the enhancement factor:
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FOPTX s( )= A + B C2s4

1+ Cs2( )2 = A + Bu2   ;  u =
Cs2

1+ Cs2 (5)

with A=1.05151, B=1.538582 and C=0.364624. One of the main differences is therefore that
whereas the PBEx exchange functional has s2 as leading term, for OPTX it is s4. One of us
therefore argued in a previous validation study for the spin-states of iron complexes,[45] that
this difference in leading terms could be responsible for the improvements observed for the
OPBE functional. Here we will see if that assessment still holds, or if it is determined more
by the constraints that are imposed on the exchange functional.

We also include a third expression for the exchange enhancement factor, which was
derived from a Bayesian Error Estimate (BEEx)[84] and which is some kind of mixture
between the PBE and OPTX expressions:

F BEE s( )= A +
Bs2

1+ s( )2 +
Cs4

1+ s( )4 (6)

with A=1.0008, B=0.1926, C=1.8962. The BEEx expression is combined with PBEc
correlation.

The expression for the correlation energy in the PBE functional (PBEc) is given by the
following formula:

EC
GGA = d3r ρ εC

unif ρ,ζ( )+ H ρ,ζ ,t( )[ ]∫ (7)

with ζ the relative spin polarization (ρup – ρdown)/ρtotal, and t another dimensionless (reduced)
density gradient, which depends on the spin-scaling factor φ and the Thomas-Fermi screening
wave number ks:

t =
∇ρ

2φ ζ( )⋅ ks ⋅ ρ
  ;  φ ζ( )=

1+ ζ( )2 3 + 1− ζ( )2 3

2
  ;  ks =

4k f

π
  ;  k f = 3π2 ⋅ ρ( )1 3 (8)

The function H in eq. 7 is determined by three conditions,[32] for the slowly varying
limit (t→0), for the rapidly varying limit (t→∞) and uniform scaling, which are satisfied by
the following ansatz:

H PBE ρ,ζ ,t( )= γφ 3 ⋅ ln 1+
β
γ

t 2 ⋅
1+ At2

1+ At 2 + A2t 4

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥   ;  A =

β
γ

1

exp −εC
unif

γφ 3( )−1
(9)

In the slowly varying limit t→0 (the term in square brackets), this is therefore slightly
different than the corresponding exchange expression (see term in square brackets in eq. 4).
For that reason, we implemented also the simplified expression for PBE correlation (sPBEc),
with the only difference with eq. 9 in the term in square brackets:
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H sPBE ρ,ζ , t( )= γφ 3 ⋅ ln 1+
β
γ

t 2 ⋅
1

1+ At 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ (10)

Combined with the original PBEx exchange expression this makes the sPBE functional.

Benchmark Systems

We used a range of characteristic properties in order to investigate the performance of the
newly obtained functionals, ranging from atomic (H-Ar) exchange energies; standard
benchmark sets like G2 atomization energies, accuracy of geometries and proton affinities;
weak interactions, i.e. π-π stacking interactions in DNA bases and hydrogen-bonding in small
molecules; energy landscapes of SN2 reactions; to geometric parameters of stationary points
in the SN2 reactions. Below, we report for each set where the reference data are coming from,
and specific details about the reference set.

Atomic Exchange Energies for H-Ar

The atomic exchange energies from Hartree-Fock are many times used as reference
values to validate or construct DFT functionals. Indeed, the OPTX functional[40] was
constructed based on fitting the parameters and functional form to reproduce as best as
possible the atomic exchange energies for H to Ar. In our tests on the atomic exchange
energies, we compare our computed energies with the Hartree-Fock values that were taken
directly from the OPTX paper.

Atomization Energies for the G2-1 and G2/97 Sets

The atomization energy of a molecule consists of its bonding energy with respect to the
sum of the energies of the isolated (spin-polarized) atoms. A number of reference sets are
available (such as the G2-1[85] or G2/97[86]) that are often used to compare DFT
functionals. Here, we use the geometries and reference energies (∆Eel) as given by Curtiss and
co-workers,1 for either the G2-1 set (55 molecules) or the G2/97 set (148 molecules).

Accuracy of Geometries for a Set of Small Molecules

Helgaker and co-workers[18,20] investigated the basis set dependence for a set of small
molecules, using a number of ab initio methods. They observed excellent results (0.1-0.2 pm)
using CCSD(T)/cc-pVxZ (x=T,Q,5) and showed an experimental error for one of the
molecules.[20] Previously,[23,36] one of us used this set of molecules to test the basis set
dependence and influence of the DFT functionals on the accuracy of the geometries. Early
GGA functionals were shown to give deviations of ca. 1 pm,[36] while functionals containing
OPTX showed somewhat smaller deviations (0.6-0.9 pm).[23] The set of molecules consists
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of the following molecules: HF, H2O, NH3, CH4, N2, CH2, CO, HCN, CO2, HNC, C2H2,
CH2O, HNO, N2H2, O3, C2H4, F2, HOF, H2O2.

Figure 3. Geometry of 180° twisted cytosine dimer used for π-π stacking benchmark.

Proton Affinities of Anionic and Neutral Bases

The proton affinity of an anionic or neutral base B is related to the enthalpy change at
298K for the following reaction: BH → B + H (∆H = –PA). In a series of papers,[76,77,87]
some of us investigated the PA values for a range of anionic and neutral bases (2nd to 6th

period hydrides for group 14-18), and studied how these are affected by methyl substitution
and solvation. These studies also included validation of the DFT functionals[76,77] by
comparing with CCSD(T) data. Early GGA functionals like BP86 and PBE showed
deviations from the CCSD(T) data of ca. 1.5 kcal·mol-1, while the values for OLYP and
OPBE are significantly larger (see below). The same reference geometries and energies as
previously were used, and the same basis set strategy. I.e. we used the TZ2P basis for
optimizing the geometry, and the QZ4P basis in the subsequent single-point energy
calculation. The set of anionic bases consists of CH3

–, C2H3
–, NH2

–, C6H5
–, H–, HCO–, OH–,

CH3O
–, CH3CH2O

–, C2H
–, (CH3)2CHO–, (CH3)3CO–, F–, SH–, CN–, Cl–, Br–,[76] while the set

of neutral bases consists of NH3, CH2CO, H2O, CO, CO2, N2.[77]

                                                                                                                                                
1 http://chemistry.anl.gov/compmat/comptherm.htm
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The π-π Stacking in DNA Bases

Recently,[74] we compared the performance of DFT functionals for π-π stacking
interactions in DNA bases and analogs. Here, we take one prototypical example (stacked
cytosine, see figure 3) and examine the deviation of the DFT functionals from a reference
CCSD(T) value of -9.93 kcal·mol-1, which was taken from ref. [88]. The vertical distance is
3.3 Å and the upper cytosine is rotated by 180° compared to the lower (around the center of
mass of the upper cytosine).[88]

Hydrogen-Bonding Interactions

Sponer, Hobza and co-workers[89] proposed a set of weakly bound dimer systems that
can be used to validate other methods. The geometries of the hydrogen-bonded dimer systems
were mainly obtained at MP2, but for four dimers (of ammonia, water, formamide, formic
acid; see figure 4) they had been obtained at the CCSD(T) level. These four were therefore
used here to compare the DFT functionals with. In particular, the distances indicated in figure
4 were used for comparison with the CCSD(T)/cc-pVxZ (x=T for formic acid and formamide
dimer, x=Q for ammonia and water dimer) distances.

Figure 4. Geometries of the hydrogen-bonded dimers (indicated with arrows are the distances that are
used for comparison with the CCSD(T) data).

Energy Landscapes of SN2 Reactions

In a recent paper,[21] we reported a study on the comparison between DFT and CCSD(T)
for the energy landscapes of gas-phase SN2 reactions (see figure 5 for a typical energy
profile). We showed that there was in general good agreement between DFT and CCSD(T)
and that this coherence was better when large basis sets were used in both the CCSD(T) and
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DFT. Here, we therefore look only at those reactions for which the reference data were
coming from studies where CCSD(T) was used for obtaining both the energy and the
geometry, and with large basis sets. In the terminology of that paper, we take only reactions
A2 to A6 into account (see tables 1 and 2 of Ref. 21).

Figure 5. Energy profile for SN2 reactions.

Structural Characterization of Stationary Points for SN2 Reactions

Similar to the energy landscapes (see above),[21] for the structural characterization of
SN2 reactions we only look at those that were obtained using CCSD(T) with a large basis set.
Therefore, the set of reactions for which the stationary points were determined by the DFT
functionals (and compared to CCSD(T)) consists of the following reactions: Cl– + CH3Br →
CH3Cl + Br–, F– + CH3Cl → CH3F + Cl–, Cl– + CH3Cl → CH3Cl + Cl–, Br– + CH3Br →
CH3Br + Br–, F– + CH3F → CH3F + F–.

Spin-State Splittings of a High-Spin Iron Compound

Previously,[45,50] we have shown that the OPBE functional works exceptionally well for
spin-states of iron complexes, and we therefore include one of the typical molecules for
which early GGAs were found to fail, which is the compound Fe(N(CH2-o-C6H4S)3)(1-Me-
imidazole). Experimentally and with OPBE, it has a high-spin sextet ground-state.

Computational Details

All DFT calculations were performed with a locally adapted version of the Amsterdam
Density Functional (ADF, version 2006.01)[90,91] program developed by Baerends et al. The
MOs were expanded in a large uncontracted set of Slater-type orbitals (TZ2P, QZ4P),[92]
which are respectively of triple-ζ quality augmented by two sets of polarization functions, and
of quadruple-ζ quality augmented by four sets of polarization functions.[91] An auxiliary set
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of s, p, d, f, and g STOs was used to fit the molecular density and to represent the Coulomb
and exchange potentials accurately in each SCF cycle. All energies and gradients were
calculated with the local density approximation (LDA) and generalized gradient
approximation (GGA) corrections added self-consistently.

Table 1. Overview of expression of exchange functionals studied (see text for further
details) and Mean Absolute Deviations (kcal·mol-1) against atomic exchange energies

functional typea,b,c A B C MAD in Ex
d

OPTX optx 1.05151 1.538582 0.364624 3.73
PBEx pbe 1.0 0.804 0.219515 40.48
BEEx bee 1.0008 0.1926 1.8962 75.49

optimized against atomic exchange
AffPBEx pbe 1.0246 4.3704 0.1450 4.26
AfpPBEx pbe 1.0116 0.7924 0.2018 6.97
AlfPBEx pbe 1.0 0.7843 0.2397 8.32
AlpPBEx pbe 1.0 0.804 0.2386 8.39

AffO optx 1.0508 1.5303 0.3687 2.94
AfpO optx 1.0416 0.7624 0.7034 5.30
AlfO optx 1.0 0.3505 2.6018 10.77
AlpO optx 1.0 0.804 1.1152 30.32

optimized against atomization energies of G2-1 set
MPffPBEx pbe 1.0807 1.7144 0.2497 689.72
MPfpPBEx pbe 1.0092 0.7948 0.4232 456.67
MPlfPBEx pbe 1.0 1.0446 0.2551 75.73
MPlpPBEx pbe 1.0 0.804 0.3826 315.29

MLffO optx 1.0728 1.5124 0.4214 221.28
MLfpO optx 1.0141 0.7899 0.9191 35.65
MLlfO optx 1.0 1.2783 0.4004 380.54
MLlpO optx 1.0 0.804 0.8354 184.75
MPffO optx 1.0890 1.4234 0.5050 416.84
MPfpO optx 1.0266 0.7774 1.0742 151.10
MPlfO optx 1.0 1.1567 0.4629 348.10
MPlpO optx 1.0 0.804 0.8680 161.63

a) pbe: F(s) = A + B·Cs2/(B + Cs2)
b) optx: F(s) = A + B·u2 ; u = (C·s2)/(1 + C·s2)
c) bee: A + B·s2/(1+s)2 + C·s4/(1+s)4

d) mean absolute deviations (kcal·mol-1) from Hartree-Fock atomic exchange energies for H-Ar.

The newly developed functionals are labeled (Xab) according to the reference data (X) to
which they were optimized and the constraints that are imposed on it (ab). The reference data
can be either A for atomic exchange (Hartree-Fock) energies of H-Ar, or MP cq. ML for
experimental molecular atomization energies of the G2-1 set; MP when obtained in
combination with PBEc correlation, and ML when obtained in combination with LYPc
correlation. The labeling of the constraints (ab=ff, fp, lf, lp) refers to the constraint at s=0 (a=l
for LDA, constraint i; a=f for free, i.e. no constraint) and at s=∞ (b=p for PBE maximum of
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constraint iii; b=f for free, i.e. no constraint). For instance, Afp refers to the functional
optimized against atomic exchange energies, with the Perdew maximum (constraint iii)
imposed on the enhancement factor with the LDA limit at s=0 not imposed (see also table 1
for the expression of the functionals).

Construction of the New Functionals

Handy and Cohen constructed their OPTX functional[40] by optimizing the atomic
exchange energies of H-Ar against those from Hartree-Fock using a large basis, ending up
with a deviation of 3.6 kcal·mol-1 between the two methods. This is significantly better than
the Becke88[41] functional (7.4 kcal·mol-1), or PBE[32] (40.5 kcal·mol-1). In the first part of
this study, we also optimize our functionals against the atomic exchange energies from
Hartree-Fock, in four different combinations (see table 1 for the parameters of the exchange
functionals thus obtained). The first combination (AffO) imposes no constraint at all, i.e.
similar to the OPTX functional. Indeed we do find similar performance for the atomic
exchange energies with a mean absolute deviation (MAD) of 2.9 kcal·mol-1 (see table 1). The
slight improvement over the original OPTX functional (MAD value 3.7 kcal·mol-1) probably
results from our fit procedure, which might be slightly different from that of Handy and
Cohen. If we now impose constraint iii (Lieb-Oxford bound)[32] on the enhancement factor,
to give the AfpO functional, the MAD value for the HF exchange energies increases to 5.3
kcal·mol-1. On the other hand, imposing the constraint for the LDA limit (constraint i), the
MAD value increases to 10.8 kcal·mol-1. By imposing both these constraints, the MAD value
goes up to 30.3 kcal·mol-1 (see table 1). The smaller deviation of OPTX compared to the
PBEx functional is therefore resulting directly from the enhanced flexibility of not imposing
constraints on the A and C parameters. At first sight, it might seem that the improved
performance is also resulting from the exchange expression of OPTX, if one compares the
MAD value of AlpO functional (30.3 kcal·mol-1) with that of PBEx (40.5 kcal·mol-1).
However, this is not a fair comparison since the C parameter is in PBEx fixed by constraint ii,
while it is freely optimized in AlpO. A better comparison is therefore made by looking at the
AlpPBEx functional, in which the C parameter was also optimized freely. Its MAD value for
the HF exchange energies (8.4 kcal·mol-1) is many times smaller than that of the AlpO
functional, which indicates in itself that the PBEx expression is “better” for exchange than the
OPTX expression. In fact, the value for the C-parameter within AlpPBEx (0.2386) is only 9%
larger than the constrained value (~0.2195). By optimizing also either the A or the B
parameter, the MAD value for HF exchange energies is reduced further, but only nominally,
to 8.3 kcal·mol-1 for AlfPBEx and 7.0 kcal·mol-1 for AfpPBEx (see table 1). Only by
optimizing all three parameters simultaneously does a further reduction to 4.3 kcal·mol-1

occur, but with a limit for s→∞ (5.395) that is unrealistically high (the OPTX functional that
violates both the local and integrated Lieb-Oxford bounds has a limiting behavior of “only”
2.59). Therefore, the relatively large MAD value of PBEx (40.5 kcal·mol-1) for the HF
exchange energies of H-Ar is largely reduced by lifting either one of constraints i, ii, or iii. In
fact, the AlfPBEx functional, in which the maximum on the enhancement factor is not
imposed, results in a value for the B parameter that is actually lower than the one that is set by
the Lieb-Oxford bound. In other words, even though it is not constrained to satisfy the Lieb-
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Oxford bound, it still does ! The downside is however that it is now no longer a non-empirical
functional.

Although many exchange functionals have been obtained by comparing with atomic
exchange (as Handy and Cohen did for OPTX),[40] there are also many (empirical)
functionals that have been fitted to, for instance, the atomization energies of the G2-1
set.[34,38,85,93,94] Examples of the latter are, for instance, the B3PW91 functional by
Becke,[11] who for the first time introduced the concept of hybrid functionals, or HCTH.[93]
Therefore, we decided to also construct functionals by optimizing the parameters of the
exchange expression for the atomization energies of the G2-1 set. In this second part, we
therefore have to include a functional for the correlation energy, which was chosen to be the
PBEc for the MPabPBE and MPabOPBE functionals, and LYPc for the MLabOLYP
functionals. It is interesting to note that for the completely free functionals (MPffPBE,
MLffOLYP, MPffOPBE), the deviation from the LDA limit (A=1.0) is substantially larger
than for the atomic functionals of the first part. For instance, the value for the A parameter
increases from 1.0508 (for AffO) to 1.0728 (MLffO) or 1.0890 (MPffO) (see table 1), and
similarly from 1.0246 for AffPBEx to 1.0807 for MPffPBEx. Furthermore, the value for the B
parameter is for the molecular functionals in this second part found to be substantially larger
than the Lieb-Oxford bound (0.804), with values of 1.0446 for MPlfPBEx, 1.2783 for MLlfO
and 1.1567 for MPlfO. Note that in the first part, even though the B parameter was not
constrained to the Lieb-Oxford bound, it still did satisfy it. For the molecular functionals, this
no longer holds.

For the molecular functionals of this second part, the mean absolute deviation (MAD) for
the G2-1 set[85] ranges from 2.5 to 5.5 kcal·mol-1 (see table 2). This is a major improvement
over the MAD values for the combination of the atomic functionals from the first part with
their respective correlation functionals, which showed MAD values from 3.1 to 14.8
kcal·mol−1. It is interesting to see that for each of the three types of molecular functionals
introduced here (MPabPBE, MLabOLYP and MPabOPBE) that the completely free form
(ab=ff) gives a significant better performance than the other three forms (ab=fp,lf,lp), which
give more or less the same MAD values. This is in particular true for the MPabPBE
functionals, where the MPffPBE functional has a MAD value of 3.1 kcal·mol-1, while the
other three have MAD values of 4.7-4.9 kcal·mol-1, despite the very different values for the
A,B,C parameters of the various molecular functionals.

The good performance of the molecular functionals does not coincide with equally good
performance for the atomic exchange energies (see table 2). Apart from the MLfpOLYP
functional, whose MAD value of 35.7 kcal·mol-1 for atomic exchange is similar to that of
PBEx, and the MPlfPBE functional, whose value of 75.7 kcal·mol-1 is comparable to that of
BEE, for the others a significantly larger MAD value is observed with values between 150
and 690 kcal·mol-1. So it seems that by fitting to molecular properties, one is losing the
accuracy for the atomic properties. We also experimented briefly by optimizing
simultaneously the atomic exchange and G2-1 atomization energies (more specifically, by
minimizing the product of their respective MAD values), but this basically lead to small
variations on the atomic functionals of the first part and will thus not be discussed any further.
The smallest deviation is observed for the MLffOLYP functional.



Table 2. Mean absolute deviation (MAD) values for standard benchmark studiesa (kcal·mol-1, pm)

functional atomic exchange G2-1 G2/97 geom. 1st rowc PA anionic PA neutrals π-π stacking hydrogen-bonding
basis set used QZ4P QZ4P QZ4P TZ2P QZ4P QZ4P TZ2P TZ2P

(kcal·mol-1) (kcal·mol-1) (kcal·mol-1) (pm) (kcal·mol-1) (kcal·mol-1) (kcal·mol-1) (pm)
PBE 40.48 7.95 16.32 0.87 1.63 1.45 7.14 2.46

sPBE 40.48 6.80 12.94 0.92 1.62 1.49 7.19 1.90
BEE 75.49 5.32 8.03 1.00 1.73 1.17 10.65 5.64

OPBE 3.73 4.79 8.90 0.90 5.54 3.83 15.62 28.11
OLYP 3.73 3.24 4.24 0.64 2.89 1.42 14.43 23.20

AffPBE 4.26 4.69 44.61 0.76 4.68 3.51 18.15 30.44
AfpPBE 6.97 10.16 23.45 0.68 1.51 1.36 6.82 4.44
AlfPBE 8.32 7.38 14.47 0.86 1.49 1.42 6.91 1.93
AlpPBE 8.39 7.08 13.58 0.87 1.48 1.39 7.13 1.83

AffOLYP 2.94 3.10 4.23 0.65 2.87 1.40 14.41 23.55
AfpOLYP 5.30 10.49 21.47 0.64 1.85 1.86 6.85 3.39
AlfOLYP 10.77 14.82 29.49 0.74 7.71 5.77 0.72 8.49
AlpOLYP 30.32 7.14 20.38 2.16 3.57 2.21 7.49 17.39
AffOPBE 2.94 4.66 8.41 0.90 5.49 3.82 15.59 28.53
AfpOPBE 5.30 10.91 27.00 0.78 2.39 1.59 8.05 3.62
AlfOPBE 10.77 14.59 34.31 0.74 4.48 3.20 0.26 11.21
AlpOPBE 30.32 7.16 15.52 1.75 1.90 1.66 8.39 17.23
MPffPBE 689.72 3.07 3.94 1.01 11.94 6.16 13.38 16.75
MPfpPBE 456.67 4.77 7.08 0.69 3.20 1.33 5.98 2.34
MPlfPBE 75.73 4.71 7.09 1.01 1.97 1.20 9.69 7.97
MPlpPBE 315.29 4.87 9.42 0.82 2.10 1.20 6.52 3.55

MLffOLYP 221.28 2.51 4.57 0.33 5.38 2.86 14.17 27.41
MLfpOLYP 35.65 4.42 8.21 1.57 3.18 2.10 7.46 13.16
MLlfOLYP 380.54 3.99 8.85 1.83 4.49 1.81 13.21 20.41
MLlpOLYP 184.75 4.61 9.73 1.95 4.74 5.99 9.04 14.50
MPffOPBE 416.84 3.47 4.71 0.61 10.96 6.48 14.34 35.41
MPfpOPBE 151.10 5.09 6.73 0.91 2.54 1.67 7.70 11.80
MPlfOPBE 348.10 5.19 7.07 1.56 2.79 1.30 13.33 21.40
MPlpOPBE 161.63 5.47 7.50 1.61 2.13 1.50 9.04 14.50

a in italics are the values which were used to construct the functionals in this chapter, in bold the functional that performs best for that particular property.
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Performance of the Functionals for Standard Benchmark Studies

Apart from the atomization energies for the G2-1 set,[85] we subjected the functionals
also to other standard benchmark studies, such as the atomization energies for the larger and
more diverse G2/97 set,[86] the accuracy of geometries of first-row molecules,[18,20,36]
proton affinities of anionic and neutral bases,[76,77] and weak interactions (π-π
stacking[74,88] and hydrogen-bonding[89]).

Atomization Energies

For many functionals considered here, going from the G2-1 set[85] with small molecules
to the more diverse G2/97 set[86] with medium-sized molecules results in a doubling of the
MAD value. A similar pattern was observed by Perdew and co-workers[47] for the MAD
values of several methods for the G2/97 and G3/3 set (that contains even larger molecules),
which doubled[47] for e.g. Hartree-Fock (148.3 [G2/97] vs. 336.4 [G3/3] kcal·mol-1), LDA
(83.7 vs. 197.1 kcal·mol-1), PBE (16.9 vs. 32.8 kcal·mol-1) or B3LYP (3.1 vs. 8.4 kcal·mol-1).
Surprisingly,[47] the MAD values decreased for their TPSS (6.0 [G2/97] vs. 5.5 kcal·mol-1)
and TPSSh (4.2 vs. 3.3 kcal·mol-1) functionals.

Here, we see in most cases also a doubling of the MAD value for the G2/97 set compared
to that of the G2-1 set. For instance, the values for OPBE are 4.8 and 8.9 kcal·mol-1, for
AlfPBE 7.4 and 14.5 kcal·mol-1, and 4.9 and 9.4 kcal·mol-1 for MPlpPBE, to name but a few.
However, there also exceptions, both in the positive and negative sense. The MAD value for
OLYP increases only from 3.2 kcal·mol-1 for G2-1 to 4.2 for G2/97, and that of MPffOPBE
from 3.5 to 4.7 kcal·mol-1. On the other hand, for AffPBE it increases from 4.7 kcal·mol-1 for
G2-1 to 44.6 kcal·mol-1 for G2/97. This is probably the result of the limit for large s of this
functional (see above). Although the MLffOLYP was the best performing functional for the
G2-1 set, it is no longer so for the larger G2/97 set, for which a MAD value of 4.6 kcal·mol-1

is observed. For the G2/97 set, the best performance is shown by the MPffPBE functional,
which was already second-best for the G2-1 set, with a MAD value of 3.9 kcal·mol-1.

Accuracy of Geometries

Previously,[23,36] one of us investigated the accuracy of geometries of a number of early
GGAs, and found the best performance for amongst others PBE (ca. 1.0 pm), while a later
study[23] showed the improved performance of OPBE and OLYP (0.8-0.9 pm). Although this
is still far from the accuracy obtained by the “gold standard” CCSD(T), which showed
deviations of ca. 0.1-0.2 pm, it is still a major improvement over Hartree-Fock that gave
deviations of 2.9 pm.[18] In comparison to the previous study,[23] where a TZP basis was
used, here we use the larger TZ2P basis set. Both PBE and OLYP significantly increase their
accuracy by ca. 0.3 pm, to 0.9 pm (PBE) and 0.6 pm (OLYP), while OPBE gives the same
deviation as it had with the TZP basis (0.9 pm). Many of the newly developed atomic
functionals provide deviations that are similar to those of OPBE and OLYP, with mean
absolute deviations between 0.6 and 0.9 pm (see table 2), and few that give much larger
deviations such as AlpOLYP (deviation 2.2 pm) or AlpOPBE (deviation 1.8 pm).
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The situation is reversed for the newly developed molecular functionals, where many
show larger deviations (between 1.0 and 2.0 pm), and few show deviations that are
comparable to OPBE or OLYP. There is however one exception (MLffOLYP) that has an
exceptionally good performance for the geometries of this set of small molecules. Its MAD
value of 0.3 pm is by far the lowest for any DFT functional, surpasses that of MP2 and CCSD
(0.5 pm),[18,20] and approaches the accuracy of the coupled cluster CCSD(T) method.

For the molecular functionals based on the OPTX expression, there is a clear correlation
between the amount of constraints that are imposed and the accuracy obtained. I.e., more
constraints imposed results directly in an increase of the deviation. This is not true for the
molecular PBE functionals, nor for the atomic functionals. For these latter functionals, the
best performance is obtained when one constraint is imposed as in AfpPBE, AfpOLYP, and
AlfOPBE.

Proton Affinities of Anionic and Neutral Bases

Recently,[76,77] some of use investigated the proton affinities of anionic and neutral
bases for hydrides of the 2nd-6th period, and groups 14-18. These studies also involved the
validation of DFT functionals for this property by comparing the DFT proton affinity values
to those from CCSD(T), where available. It was shown that DFT works in general very well,
and has a mean absolute deviation from CCSD(T) (and experiment) of ca 1.5 kcal·mol-1.
Surprisingly, the deviations were larger for OPBE and (in lesser amount) OLYP than for
PBE. Here we find the same for the newly developed functionals based on the OPTX
expression, which show deviations between 1.9 and 11.0 kcal·mol-1 for anionic bases, and
between 1.3 and 6.5 kcal·mol-1 for neutral bases (see table 2).

Surprisingly, in many cases and for both the atomic and molecular functionals, the
constrained functionals show better performance than the non-constrained (ab=ff) ones. For
instance, MPffOPBE gives deviations of 11.0 (anionic bases) and 6.5 (neutral) kcal·mol-1,
while MPlpOPBE gives values of 2.1 and 1.5 kcal·mol-1 respectively. The same happens for
the atomic counterparts with values of 5.5/3.8 kcal·mol-1 for AffOPBE, and values of 1.9/1.7
kcal·mol-1 for AlpOPBE. Therefore, there is no direct relationship between atomic exchange
(or atomization energies of the G2-1 set) on one hand, and the proton affinities at the other.
Or at best, there is an anti-correlation between the two sides.

Weak Interactions

One of the traditionally weak points of DFT is formed by π-π stacking interactions,[74]
while hydrogen-bonding interactions are described reasonably well to very good by many
functionals.[75] These trends are well shown by the PBE functional, that gives a deviation of
7.1 kcal·mol-1 for the π-π stacking of the 180° twisted cytosine dimer, and for a set of four
hydrogen-bonded dimers gives a mean absolute deviation of 2.5 pm (see table 2). Note that
PBE still predicts an attractive interaction for the π-π stacking (-2.8 kcal·mol-1).

The failure of both OPBE and OLYP for weak interactions is immediately obvious from
table 2, i.e. they show deviations of 15.6 (OPBE) and 14.4 (OLYP) kcal·mol-1 for π-π
stacking. Note that this corresponds to repulsive interactions of +5.7 and +4.5 kcal·mol-1
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respectively. Also for hydrogen-bonding interactions are they not performing well with mean
absolute deviations of 28.1 (OPBE) and 23.2 (OLYP) pm. Both functionals predict H-bond
distances that are substantially larger than they should be, i.e. they severely underestimate
hydrogen-bonding interactions. In a recent study on hydrogen-bonding interactions in DNA
bases,[75] we already showed this failure of OPBE.

The performance of the newly developed functionals for the weak interactions shows no
general trend, although all functionals without constraints imposed (ab=ff) perform badly for
both π-π stacking and hydrogen-bonding interactions. For π-π stacking, these functionals
show MAD values between 13.4 and 18.2 kcal·mol-1 (all repulsive), while for hydrogen-
bonding the MAD values are between 16.8 and 35.4 pm. The functionals with one or more
constraint imposed show somewhat smaller MAD values, and in some cases are the best
performing functionals. For instance for π-π stacking, the AlfOPBE functional has a MAD
value of only 0.3 kcal·mol-1, which is however not accompanied by an equally good
performance for hydrogen-bonding where it shows a MAD value of 11.2 pm. The best
performance for hydrogen-bonding is shown by AlpPBE, with a MAD value of 1.8 pm, but in
a similar fashion to AlfOPBE it does not perform equally well for π-π stacking, for which it
has a MAD value of 7.1 kcal·mol-1.

Table 3. Deviationsa from CCSD(T) results for SN2 reaction energy profiles (kcal·mol-1)

functional ∆Ereact ∆Ecmpx ∆E‡,centr ∆E‡,ovr PE
PBE 0.34 1.49 6.43 7.78 4.01

sPBE 0.68 1.48 6.54 7.45 4.04
BEE 0.32 1.44 5.92 5.61 3.32

OPBE 0.31 3.54 3.37 1.26 2.12
OLYP 0.50 2.58 4.14 1.69 2.23

AffPBE 0.23 4.09 4.95 0.92 2.55
AfpPBE 0.31 1.52 6.26 7.65 3.94
AlfPBE 0.34 1.55 6.53 7.99 4.10
AlpPBE 0.34 1.49 6.49 7.85 4.04

AffOLYP 0.51 2.57 4.14 1.69 2.23
AfpOLYP 0.50 1.67 5.04 6.32 3.38
AlfOLYP 0.37 5.64 8.75 14.40 7.29
AlpOLYP 0.55 1.83 5.61 7.07 3.76
AffOPBE 0.32 3.54 3.37 1.26 2.12
AfpOPBE 0.31 1.56 4.27 4.47 2.65
AlfOPBE 0.19 4.56 7.98 12.54 6.32
AlpOPBE 0.37 1.61 4.84 5.22 3.01
MPffPBE 0.22 2.48 4.54 2.06 2.33
MPfpPBE 0.32 1.97 7.28 9.26 4.71
MPlfPBE 0.36 1.34 6.19 6.37 3.56
MPlpPBE 0.34 1.80 7.15 8.91 4.55

MLffOLYP 0.49 2.87 3.56 1.44 2.09
MLfpOLYP 0.55 1.72 5.27 6.52 3.51
MLlfOLYP 0.59 2.01 5.07 3.89 2.89
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Table 3. Continued.

functional ∆Ereact ∆Ecmpx ∆E‡,centr ∆E‡,ovr PE
MLlpOLYP 0.58 1.71 5.37 6.47 3.54
MPffOPBE 0.29 3.85 2.37 1.74 2.06
MPfpOPBE 0.32 1.57 4.53 4.97 2.85
MPlfOPBE 0.41 2.10 4.28 2.40 2.30
MPlpOPBE 0.39 1.66 4.61 4.65 2.83

a results obtained using QZ4P basis set, in bold the functional that performs best for that particular property.

Performance of the Functionals for SN2 Energy Landscapes
and Structural Characterization

The performance of the functionals for the energy profile of SN2 reactions is measured in
terms of four components of the energy profile.[21] These correspond to (see figure 5): the
overall reaction energy (Ereact), the complexation energy (Ecmpx), the central barrier (E‡

centr)
and the overall barrier (E‡

ovr). The absolute deviation from the reference CCSD(T) data for
each component is obtained for each reaction, and averaged over all reactions (A2-A6) to
give the MAD value for each component. The average of the MAD values for the four
components then gives the performance for the energy profile (PE).

Given in table 3 are the MAD values for each component and the PE value for all
functionals considered in this chapter. As already discussed previously,[21] the early GGA
functionals like PBE have in particular problems with reaction barriers, which is dramatically
reduced by the functionals with OPTX. For instance, the MAD value for the central barrier is
6.4 kcal·mol-1 for PBE, 4.1 kcal·mol-1 for OLYP and only 3.4 kcal·mol-1 for OPBE. This also
influences the overall PE performance considerably, where the value for PBE (4.0 kcal·mol-1)
is nearly halved for OLYP (2.2 kcal·mol-1) and OPBE (2.1 kcal·mol-1).

For the newly developed functionals, the best performance is obtained for those without
constraints imposed (see table 3). This is in particular true for PE and the central barrier, for
which MPffOPBE performs best with MAD values of 2.1 and 2.4 kcal·mol-1 respectively, and
the overall barrier, for which AffPBE performs best with a value of 0.9 kcal·mol-1. Imposing
constraints raises the MAD values of the barriers substantially, but, interestingly, at the same
time lowers the MAD values for the complexation energy. The MAD values for the reaction
energy seems to be hardly affected by imposing constraints or not, i.e. the MAD value for all
functionals is found within the very narrow range of 0.2-0.7 kcal·mol-1. The lowering of the
MAD value for the complexation energy upon imposing constraints is somewhat consistent
with the trend observed for the hydrogen-bonding interactions (see above), where the largest
MAD value was shown by the functionals without constraints. However, imposing constraints
is not in all cases favorable for the complexation energy, as is shown by e.g. the AlfOLYP and
AlfOPBE functionals. The MAD value for the complexation energy of AlfOLYP is more than
twice as large as that of the constraint-free AffOLYP functional, leading to an overall PE value
of 7.3 kcal·mol-1. This is the largest PE value in this chapter, and in fact even larger than
LDA, which had a PE value of 5.6 kcal·mol-1 for reactions A2-A6.



Table 4. Deviationsa from CCSD(T) geometries for stationary points of SN2 reactions (Å, deg)b

functional Rall RR,P RRC,PC RTS θall θR,C θRC,PC θTS PG
PBE 0.101 0.010 0.139 0.078 4.134 0.082 5.581 5.145 0.418

sPBE 0.092 0.012 0.139 0.050 3.842 0.106 5.577 3.375 0.353
BEE 0.037 0.012 0.041 0.042 0.921 0.076 0.754 2.771 0.034

OPBE 0.069 0.010 0.115 0.017 0.607 0.338 0.621 0.958 0.042
OLYP 0.063 0.007 0.095 0.034 0.463 0.049 0.396 1.317 0.029

AffPBE 0.050 0.006 0.076 0.028 0.712 0.139 0.548 2.143 0.036
AfpPBE 0.031 0.005 0.038 0.032 0.993 0.071 0.819 2.988 0.031
AlfPBE 0.102 0.011 0.139 0.081 4.668 0.100 5.606 8.241 0.476
AlpPBE 0.092 0.011 0.139 0.050 3.933 0.102 5.603 3.836 0.362

AffOLYP 0.059 0.007 0.088 0.034 0.470 0.062 0.400 1.328 0.028
AfpOLYP 0.030 0.008 0.033 0.036 0.604 0.061 0.531 1.673 0.018
AlfOLYP 0.126 0.018 0.175 0.094 4.672 0.444 6.498 4.622 0.589
AlpOLYP 0.151 0.036 0.187 0.145 4.525 0.598 6.211 4.514 0.683
AffOPBE 0.064 0.010 0.107 0.017 0.563 0.308 0.555 0.975 0.036
AfpOPBE 0.022 0.009 0.029 0.016 0.548 0.285 0.502 1.107 0.012
AlfOPBE 0.113 0.007 0.166 0.074 4.253 0.198 5.768 5.037 0.481
AlpOPBE 0.058 0.024 0.063 0.066 0.719 0.209 0.667 1.663 0.042
MPffPBE 0.045 0.010 0.064 0.030 0.506 0.087 0.457 1.304 0.023
MPfpPBE 0.113 0.018 0.147 0.101 4.547 0.498 6.254 4.645 0.514
MPlfPBE 0.113 0.015 0.151 0.094 4.669 0.218 5.649 7.918 0.528
MPlpPBE 0.111 0.017 0.145 0.100 5.045 0.451 6.140 8.104 0.560

MLffOLYP 0.063 0.004 0.097 0.034 0.357 0.069 0.334 0.870 0.022
MLfpOLYP 0.060 0.025 0.063 0.074 1.148 0.355 1.153 2.319 0.069
MLlfOLYP 0.066 0.023 0.084 0.057 0.729 0.129 0.580 2.153 0.048
MLlpOLYP 0.065 0.029 0.069 0.077 1.154 0.348 1.145 2.394 0.075
MPffOPBE 0.071 0.009 0.123 0.012 0.360 0.224 0.457 0.226 0.026
MPfpOPBE 0.039 0.012 0.045 0.044 0.478 0.057 0.436 1.255 0.019
MPlfOPBE 0.053 0.015 0.076 0.031 0.534 0.167 0.432 1.441 0.028
MPlpOPBE 0.047 0.019 0.055 0.046 0.482 0.057 0.445 1.249 0.023

a results obtained using QZ4P basis set, in bold the functional that performs best for that particular property
b more information can be found in ref. [21].
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Performance of the Functionals for Structural Characterization
of SN2 Stationary Points

Similar to the energetic performance for SN2 reactions, for the structural characterization
of their stationary points we also take a look at different components,[21] and compare the
DFT results for these with reference values that were obtained with CCSD(T) calculations.
Specifically, we look at the bonds and angles for the reactants/products, reactant/product
complexes and transition state structures. The mean absolute deviation is then taken for both
the bonds and the angles, and the product of these values is then the overall performance PG

for the geometry of SN2 reactions. Previously,[21] we already showed that not only do OPBE
and OLYP improve considerably upon PBE for the overall performance for the energy, but
also for the geometry. I.e., the PG value for PBE (0.418) is dramatically reduced for both
OPBE (0.042) and OLYP (0.029). Note that the values reported in this chapter are different
from the previously reported values,[21] since we take only the data obtained with large basis
sets into account here.

The performance of the newly developed functionals for the structural characterization of
SN2 reactions is for most cases a clear improvement over the early GGAs, and in many cases
also over OLYP/OPBE. In general, the constraint-free functionals (ab=ff) perform
significantly better than when constraints are imposed (see table 4). For instance, the PG value
of MPffPBE is small (0.02), while those of the corresponding constrained ones are very large
(0.51-0.56), indeed even larger than the already substantial PBE value (0.42). This is however
not true for the MPabOPBE functionals that have all PG values between 0.019 and 0.028.
Equally well-performing are MPffOLYP, MPffPBE and several atomic functionals.
Extraordinarily good is the AfpOPBE functional with a PG value of only 0.012, i.e. a further
reduction by around two compared to OLYP and e.g. the MPabOPBE functionals. This is
mainly resulting from the improved description of bonds (for which it has a MAD value of
0.022 Å), and not as much the angles for which the MAD value is similar to that of e.g.
OLYP/OPBE. The small MAD value for the distances is, compared to the other functionals,
mainly resulting from the RC/PC complexes, for which AfpOPBE shows a MAD value of
0.029 Å w.r.t. the CCSD(T) data, which is smaller than that of OPBE and OLYP by a factor
of around three. The poorest performance is shown for the AlpOLYP functional, with a PG

value of 0.68, which results from the poor performance for both bonds (MAD value 0.15 Å)
and angles (MAD value 4.53 deg).

Taking both the PE and PG values into consideration, we find that there is no clear
relationship between the two in general. Although there are functionals (like MLffOLYP and
MPffOPBE) that improve upon OLYP and OPBE for both PE and PG, there are also many
others that do well for one but somewhat less for the other. For instance, the best performing
functional for SN2 geometries (AfpOPBE) is significantly less accurate for energies.
Furthermore, there are many functionals (such as MLfpOLYP) that are considerably less
accurate for both SN2 energetics and geometries.
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Comparison of PBE with the Simplified PBE (sPBE) and BEE
Functionals

So far we have discussed only the (non-constrained) functionals, and how the presence of
these affect their performance. However, we would also like to investigate the performance of
the sPBE and BEE[84] functionals. As mentioned in the section on the construction of the
functionals, the sPBE functional is a simplification of the PBEc correlation functional and
uses the original PBEx exchange, while the BEE was determined from a Bayesian Error
Estimate[84] and is different from PBE only in the exchange part.

The performance of the sPBE functional is in many cases similar to that of the original
PBE functional, both for many of the standard benchmark tests and the SN2 benchmarks.
However, there are also some tests where the simplified PBE correlation performs better than
the original functional. For instance, the MAD values for the atomization energies of the G2-1
and G2/97 sets are considerably smaller for sPBE (6.8 and 12.9 kcal·mol-1) than for PBE (8.0
and 16.3 kcal·mol-1), see table 2. Likewise, the MAD value for the hydrogen-bonding
distances is also significantly smaller for sPBE (1.9 pm) than for PBE (2.5 pm). Therefore,
although for some systems the sPBE functional performs better than PBE, the improvements
are not spectacular as was shown by e.g. OPBE for the reaction barriers.

The BEE functional on the other hand is significantly better than either PBE or sPBE for
the atomization energies (see table 2), but at the same time significantly worse for the
accuracy of geometries of the small molecules and for the weak interactions. For instance, its
MAD value for π-π stacking is 10.7 kcal·mol-1, and for hydrogen-bonding distances 5.6 pm,
which are respectively 3.6 kcal·mol-1 and 3.7 pm larger than the sPBE values. For the SN2
benchmarks, it does better than either PBE or sPBE but only marginally so, especially
compared to the major improvements shown by OPBE and OLYP.

Spin-State Splittings of a High-Spin Iron Compound

It was previously shown[45,50] that the OPBE functional works exceptionally well for
spin-states of iron complexes, and although we do not have CCSD(T) data to compare with,
we know the experimental ground-state of the molecules. Therefore we include here as test on
the newly developed functionals the calculation of the spin-state splittings of one of the
typical iron compounds, i.e. Fe(N(CH2-o-C6H4S)3)(1-Me-imidazole). Experimentally, and
with the OPBE functional, it has a high-spin sextet ground-state with the low-spin doublet
and intermediate quartet higher in energy. Similar to what was observed for the energetics of
the SN2 reactions, the non-constrained functionals perform better than the constrained ones
(see table 5). The majority of the newly developed functionals, however, do not predict the
correct spin ground-state. For the ones that do, the largest separation between low- and high-
spin is obtained with the MPffOPBE functional (17.3 kcal·mol-1), while the AlpOPBE predicts
all three states at virtually the same energy.
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Table 5. Spin-state splittings (kcal·mol-1) for Fe(N(CH2-o-C6H4S)3)(1-Me-imidazole)
(see figure 6)

functional double
t

quartet sextet

PBE -4.1 -2.5 0
sPBE -4.4 -2.7 0
BEE -2.4 -1.6 0

OPBE 12.4 6.3 0
OLYP 7.4 4.0 0

AffPBE 2.2 0.9 0
AfpPBE -2.7 -1.7 0
AlfPBE -4.8 -2.8 0
AlpPBE -4.6 -2.8 0

AffOLYP 7.3 4.0 0
AfpOLYP 2.6 1.5 0
AlfOLYP -16.5 -9.2 0
AlpOLYP -5.0 -2.6 0
AffOPBE 12.4 6.3 0
AfpOPBE 7.4 3.8 0
AlfOPBE -11.9 -6.9 0
AlpOPBE -0.1 -0.2 0
MPffPBE 5.7 3.2 0
MPfpPBE -9.7 -5.2 0
MPlfPBE -3.9 -2.3 0
MPlpPBE -9.1 -4.9 0

MLffOLYP 10.4 5.7 0
MLfpOLYP -1.3 -0.6 0
MLlfOLYP 1.4 0.5 0
MLlpOLYP -1.8 -1.0 0
MPffOPBE 17.3 9.2 0
MPfpOPBE 2.9 1.5 0
MPlfOPBE 6.3 2.9 0
MPlpOPBE 2.8 1.2 0

Figure 6. Iron(III) complex Fe(N(CH2-o-C6H4S)3)(1-Me-imidazole).
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Conclusion

We have explored in this chapter what might be the origin of the spectacular
improvements of OPBE (and OLYP) over PBE for a number of chemical properties, such as
atomization energies, accuracies of geometries and reaction energy profiles. In particular, we
have investigated what is the effect of the constraints that are imposed on the PBEx exchange
functional, on the one hand by lifting these constraints for the PBEx functional, and on the
other by imposing them on the OPTX functional. For all benchmark tests we investigated, the
best performance is obtained with one of the newly developed functionals, but unfortunately
there is no one that is equally good for all benchmarks.

A comparison of the performance of the AlpPBE, AlpOPBE and AlpOLYP shows that the
PBEx exchange expression is better suited for the fulfillment of the constraints than is the
OPTX expression. The mean absolute deviations are in all these cases lower with the PBEx
expression than with the OPTX one. However, these constrained functionals work well only
for proton affinities and hydrogen-bonded systems, for the other benchmark tests are the non-
constrained functionals working much better. This leads to sometimes extraordinarily good
performance, for instance for the accuracy of geometries where the MLffOLYP functional
approaches the accuracy of CCSD(T).

The poor performance for weak interactions by OPBE and related unconstrained
functionals does not result from the way how the exchange functional has been obtained.
Both the newly developed atomic (e.g. AffOPBE) and molecular (e.g. MPffOPBE) functionals
are particularly poor for the weak interactions, which is in some cases improved upon by
imposing one (or more) constraint(s). This is especially true for the newly developed
functionals based on the PBEx expression that in general do a better job for weak interactions
than those based on the OPTX expression. The same is true for the proton affinities, while it
is the opposite for the reaction barriers, etc. Therefore, the replacement of s2 as leading term
in the PBEx expression by s4 in the OPTX expression is not beneficial for all systems.
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